
Course Introduction
2020 / 9 / 24

Slides adapted from Berkeley CS61a

What is Computer Science?

● What problems can be solved using computation?

● How to solve those problems?

● What techniques lead to effective solutions?

Computer Science is no more about
computers than astronomy is about
telescopes.

Edsger W. Dijkstra

What is Computer Science?

● Systems

● Artificial Intelligence

● Graphics

● Security

● Networking

● Programming Languages

● Theory

● Scientific Computing

...

What is this course about?

● Introduction to Programming

○ Full understanding of Python fundamentals

○ Combining multiple ideas in large projects

○ How computers interpret programming languages

○ More …

What is this course about?

● Introduction to Programming

● Managing Complexity

○ Mastering Abstraction

What is this course about?

● Introduction to Programming

● Managing Complexity

○ Mastering Abstraction

○ Programming Paradigms

● A challenging course that will demand a lot from you

Alternative to this course

● 程序设 设 基设

● Programming in C

● Similar goals, different textbooks and languages

https://en.wikipedia.org/wiki/Structure_and_Interpre

tation_of_Computer_Programs

This Course: A Clone of BerkeleyCS61A

• 教材： Composing Programs，SICP的Python版
• https://composingprograms.com/

• 全美最受欢迎的5门计算机课程之一

https://cs61a.org/

https://cs61a.org/resources.html#advice

https://composingprograms.com/

Course Format

● homework assignments

● programming projects

● A midterm and a final

● Lots of course support

Lecture

Lab section

Online textbook

Th/F 14:00 -15:50，仙I-106

Th 16:00 – 18:00，基设 设 设 楼 乙124

https://composingprograms.com

Course webpage https://cs.nju.edu.cn/xyfeng/teaching/SICP

Office hours Th 19:00 – 21:00

https://composingprograms.com
https://cs.nju.edu.cn/xyfeng/teaching/SICP

Grading

● Homework, 15%

Homeworks

● Will be graded on “effort”

● This approximately means, completing most of the problems and at

least attempting to solve the rest

● This means there’s no reason to cheat!

● Ask for help if you are stuck and make a good effort on all of the

homework

Grading

● Homework, 15%

● Labs, 10%

○ Graded on correct completion

○ Need to complete in the lab section

● Projects, 25%

Projects

● Will be graded on correctness and composition

● Several of the programming projects will be partnered

● Larger than homeworks

Grading

● Homework, 15%

● Labs, 10%

● Projects, 25%

● Midterm, 25%

● Final, 25%

Collaboration

● We highly encourage discussing / sharing ideas with each other

● Limitations

○ Do not share code

○ The only circumstance in which a student should be looking at another student's

code is if they are project partners

Questions?

What is programming about, really?

Expressions

Types of Expressions

An expression describes a computation and evaluates to a value

Call Expressions in Python

All expressions can use function call notation

Demo

Anatomy of a Call Expression

add (2 , 3)

Operator Operand Operand

Operators and operands are also expressions

Evaluation of a Call Expression

1. Evaluate

a. Evaluate the operator subexpression

b. Evaluate each operand subexpression

2. Apply

a. Apply the value of the operator subexpression to the values of the operand subexpression

add (2 , 3)

Operator Operand Operand

add(add(6, mul(4, 6)), mul(3, 5))

Humans

We like to inside inside-out

add(add(6, mul(4, 6)), mul(3, 5))
add(add(6, 24), mul(3, 5))
add(add(6, 24), mul(3, 5))
add(30 , mul(3, 5))
add(30 , mul(3, 5))
add(30 , 15)
add(30 , 15)

45

Python can’t jump around in the same way we do

Nested Call Expression

Evaluate operator Evaluate operands Apply!

add(add(6, mul(4, 6)), mul(3, 5))

add

1 2 3

add(6, mul(4, 6))

add 6 mul(4, 6)

mul 4 6

24

30

mul(3, 5)

15

mul 3 5

45

Expression Tree

Functions, Values, Objects, Interpreters and Data

Demo

