
Lecture 2 - Names &

Functions
9 / 25 /20

Slides adapted from Berkeley CS61a

Program Structure

Review - Expressions

Primitive Expressions:

Call Expressions:

2 “hello!” add

add(3, 4)

max(add(2, 3), 5 * min(-1, 4))

Arithmetic Expressions: 1 + 2 15 // 3

numbers strings names

Review - Evaluating Call Expressions

1. Evaluate

a. Evaluate the operator subexpression

b. Evaluate each operand subexpression

2. Apply

a. Apply the value of the operator subexpression to the values of the

operand subexpression

add (2 , 3)

Operator Operand Operand

Nested Call Expression

Evaluate operator Evaluate operands Apply!

add(add(6, mul(4, 6)), mul(3, 5))

add

1 2 3

add(6, mul(4, 6))

add 6 mul(4, 6)

mul 4 6

24

30

mul(3, 5)

15

mul 3 5

45

Expression Tree

Values

Programs manipulate values

Values represent different types of data

Floats:

Integers: Strings:

Booleans:

2 44 -3

3.14 4.5 -2.0

“cs61a”“hello!”

FalseTrue

Expressions & Values

Expressions evaluate to values in one or more steps

‘hello!’

7 / 2 3.5

add(1, max(2, 3)) 4

Expression:

‘hello!’

Value:

Names

Values can be assigned to names

to make referring to them easier.

A name can only be bound to a

single value.

Demo

One way to introduce a new name in a program is with an assignment

statement.

x = 1 + 2 * 3 - 4 // 5

Name Expression

7

x

Statements affect the program, but do not evaluate to values.

Check Your Understanding

>>> f = min
>>> f = max
>>> g, h = min, max
>>> max = g
>>> max(f(2, g(h(1, 5), 3)), 4)
???

Visualizing Assignment

Names are bound to values in an environment

To execute an assignment statement:

1. Evaluate the expression to the right of =.

2. Bind the value of the expression to the name to the left of = in the current

environment.

Final Value

Bindings

Name

Demo

func min(...)

f(2, g(h(1, 5), 3))

func max(...) 2

g(h(1, 5), 3)

func min(...)

h(1, 5)

3

func max(...) 1 5

5

3

3 4

3

3

Demo

Functions

Functions

Functions allow us to abstract away entire expressions and sequences of

computation

They take in some input (known as their arguments) and transform it into an

output (the return value)

We can create functions using def statements. Their input is given in a function

call, and their output is given by a return statement.

square
5 25

Defining Functions

def <name>(<parameters>):
return <return expression>

Function signature indicates name and number of arguments

Function body defines the computation
performed when the function is applied

def square(x):
return x * x

y = square(-2)

Execution rule for def Statements

1. Create a function with signature <name>(<parameters>)

2. Set the body of that function to be everything indented after
the first line

3. Bind <name> to that function in the current frame

Demo

Functions in Environment Diagrams

Built-in function

User-defined function

def statements are a type of assignment that bind names to

function values

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (for now)

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

def square(x):
return x * x

square(-2)

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (for now)

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

def square(x):
return x * x

square(-2)
Local frame

Intrinsic name

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (for now)

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

def square(x):
return x * x

square(-2)
Parameter

Argument

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (for now)

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

def square(x):
return x * x

square(-2)

Putting it all together

1. Evaluate

a. Evaluate the operator subexpression

b. Evaluate each operand subexpression

2. Apply

a. Apply the value of the operator

subexpression to the values of the

operand subexpression

def square(x):
return x * x

square(1 - 3)

Operator: square
Function: func square(x)

Operand: 1-3
Argument: -2

Local frame

Formal parameter
bound to argument

Drawing Environment Diagrams

● Option 1: Python Tutor (tutor.cs61a.org)

○ Useful for quick visualization or for environment diagram questions

● Option 2: PythonAnywhere (editor.pythonanywhere.com)

○ Includes an integrated editor/interpreter

○ Good for more complicated code or if you want to debug

○ Developed by Rahul Arya

http://tutor.cs61a.org
http://editor.pythonanywhere.com

Summary

● Programs consist of statements, or instructions for the computer, containing

expressions, which describe computation and evaluate to values.

● Values can be assigned to names to avoid repeating computations.

● An assignment statement assigns the value of an expression to a name in the

current environment.

● Functions encapsulate a series of statements that maps arguments to a

return value.

● A def statement creates a function object with certain parameters and a

body and binds it to a name in the current environment.

● A call expression applies the value of its operator, a function, to the value(s)

or its operand(s), some arguments.

