
Lecture 6 - Recursion

Review: Abstraction

Describing Functions

A function's domain is the set of all inputs it might

possibly take as arguments.

A function's range is the set of output values it might

possibly return.

A pure function's behavior is the relationship it creates

between input and output.

def square(x):
"""Return X *

X"""

x is a number

square returns a non-
negative real number

square returns the
square of x

Functional Abstraction

Mechanics

How does Python execute this program

line-by-line (e.g. Python Tutor)

What happens when you evaluate a call

expression, what goes on its body, etc.

Use (functional abstraction)

● square(2) always returns 4

● square(3) always returns 9

● ...

Without worrying about how Python

evaluates the function

Demo

Recursion

Suppose you're waiting in line for a concert.

You can't see the front of the line, but you want to know what
your place in line is. Only the first 100 people get free t-
shirts!

You can't step out of line because you'd lose your spot.

What should you do?

An iterative algorithm might say:

1. Ask my friend to go to the front of the
line.

2. Count each person in line one-by-one.

3. Then, tell me the answer.

A recursive algorithm might say:

• If you're at the front, you know you're first.

• Otherwise, ask the person in front of you,
"What number in line are you?"

• The person in front of you figures it out by
asking the person in front of them who asks
the person in front of them etc…

• Once they get an answer, they tell you and
you add one to that answer.

Recursion

Recursion is useful for solving problems with a naturally repeating

structure - they are defined in terms of themselves

It requires you to find patterns of smaller problems, and to define the

smallest problem possible

Recursion in Evaluation

f(g(h(2), True), h(x))

g(h(2), True)

h(2)

h(x)
A call expression
is composed of

smaller (call)
expressions!

Stop once you
reach a number,
boolean, name,

etc.

Recursive Functions

Recursive Functions

● A function is called recursive if the body of that function

calls itself, either directly or indirectly

● This implies that executing the body of a recursive

function may require applying that function multiple

times

● Recursion is inherently tied to functional abstraction

Structure of a Recursive Function

1. One or more base cases, usually the smallest input.

• "If you're at the front, you know you're first."

1. One or more ways of reducing the problem, and then solving the
smaller problem using recursion.

• "Ask the person in front, 'What number in line are you?'"

1. One or more ways of using the solution to each smaller problem
to solve our larger problem.

• "When the person in front of you figures it out and tells
you, add one to that answer."

Demo

Functional Abstraction & Recursion

Expression

fact(1)

fact(3)

fact(4)

fact(n - 1)

fact(n)

Value

n * fact(n - 1)

1

6 (3 * 2 * 1)

24 (4 * 3 * 2 * 1)

n-1 * n-2 * ... * 1

n * n-1 * n-2 * .. * 1

Verifying factorial

Is factorial correct?

1. Verify the base cases.

○ Are they correct?

○ Are they exhaustive?

Now, harness the power of

functional abstraction!

1. Assume that factorial(n-1)

is correct.

2. Verify that factorial(n)

is correct.

def fact(n):

if n == 0:

return 1

else:

return n * fact(n-1)

Functional abstraction: don't worry that
fact is recursive and just assume that

factorial gets the right answer!

Break

Visualizing Recursion
Demo

http://pythontutor.com/composingprograms.html#code=def%20fact%28n%29%3A%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20n%20*%20fact%28n%20-%201%29%0A%0Afact%283%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Recursion in Environment Diagrams

The same function fact is called multiple

times, each time solving a simpler

problem

All the frames share the same parent -

only difference is the argument

What n evaluates to depends upon the

current environment

What is fact(3)?

What is fact(2)?

What is fact(1)?

What is fact(0)?

fact(0) is 1

Recursive tree - another way to visualize recursion

fact(3)

fact(2)

fact(1)

fact(0)

3 *

2 *

1 *

1

1

1

2

6

1 def fact(n):
2 """Calculates n!"""
3 if n == 0:
4 return 1
5 else:
6 return n * fact(n-1)

How to Trust Functional Abstraction

Look at how we computed fact(3)

● Which required computing fact(2)

○ Which required computing fact(1)

■ Which required computing fact(0)

● Which we know is 1, thanks to the base case!

Verifying the correctness of recursive functions

1. Verify that the base cases work as expected

2. For each larger case, verify that it works by

assuming the smaller recursive calls are correct

Assume this all
works!

Identifying Patterns

Is factorial correct?

1. List out all the cases.

2. Identify patterns between each

case.

3. Simplify repeated code with

recursive calls.

def fact(n):

if n == 0 or n == 1:

return 1

elif n == 2:

return 2 * 1

elif n == 3:

return 3 * 2 * 1

elif n == 4:

return 4 * 3 * 2 * 1

elif n == 5:

return 5 * 4 * 3 * 2 * 1

elif n == 6:

return 6 * fact(5)

else:

return n * fact(n-1)

Examples

Count Up

Let’s implement a recursive function to print the numbers from 1
to `n`. Assume `n` is positive.

def count_up(n):
"""Prints the numbers from
1 to n.

>>> count_up(1)
1
>>> count_up(2)
1

2
>>> count_up(4)
1

2
3
4

"""
"*** YOUR CODE HERE

***"

1. One or more base

cases

2. One or more

recursive calls

with simpler

arguments.

3. Using the

recursive call to

solve our larger

problem.

Demo

Count Up - Summary

1. Base case

○ What is the smallest number where we don’t have to do any work?

■ We know `n` is positive so the the smallest positive integer is

1 and if n = 1, print it out and do nothing else.

2. Recursive call with smaller arguments

○ Have access to the largest number, so try printing smaller

numbers

3. Use recursive call to solve the problem

○ Once we’ve printed up to n - 1, what value is left?

Sum Digits

Let’s implement a recursive function to sum all the digits of `n`.
Assume `n` is positive.

def sum_digits(n):
"""Calculates the sum of

the digits `n`.
>>> sum_digits(9)
9
>>> sum_digits(19)
10
>>> sum_digits(2019)
12

"""
"*** YOUR CODE HERE

***"

1. One or more base

cases

2. One or more

recursive calls

with simpler

arguments.

3. Using the

recursive call to

solve our larger

problem.

Demo

Sum Digits Discussion

What’s our:

Input?

Number

Output?

Sum of all the digits

Base case?

A single digit

Smaller problem?

Sum of all digits but one

Larger problem?

Sum of all digits but one plus the digit

that was left out

Iteration vs. Recursion

● Iteration and recursion are somewhat related

● Converting iteration to recursion is formulaic, but

converting recursion to iteration can be more tricky

def fact_iter(n):

total, k = 1, 1

while k <= n:

total, k = total*k, k+1

return total

def fact(n):

if n == 0:

return 1

else:

return n * fact(n-1)

Iterative Recursive

Names: n, total, k, fact_iter Names: n, fact

Summary

● Recursive functions are functions that call themselves in their

body one or more times

○ This allows us to break the problem down into smaller pieces

○ Using functional abstraction, we do not have to worry about how

those smaller problems are solved

● A recursive function has a base case to define its smallest

problem, and one or more recursive calls

○ If we know the base case is correct, and that we get the correct

solution assuming the recursive calls work, then we know the

function is correct

● Evaluating recursive calls follow the same rules we’ve talked

about so far

