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Recursion (review)

Scenario: You are waiting in line for a concert. You can't see the front of 
the line, but you want to know your place in the line.

Base case

Recursive call

Use the solution to 
the smaller problem

You ask the person in front of you: “what is your 
place in the line?”

When the person in front of you figures it out and 
tells you, add one to that answer.

The person at the front, knows they are at the front!



Iteration vs. Recursion

● Iteration and recursion are somewhat related

● Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

def fact_iter(n):

    total, k = 1, 1

    while k <= n:

        total, k = total*k, k+1

    return total

def fact(n):

    if n == 0:

        return 1

    else:

        return n * fact(n-1)

Iterative Recursive

Names: n, total, k, fact_iter Names: n, fact



Sum Digits

Let’s implement a recursive function to sum all the digits of `n`. 
Assume `n` is positive.

def sum_digits(n):
"""Calculates the sum of   

the digits `n`.
>>> sum_digits(8)
8
>>> sum_digits(18)
9
>>> sum_digits(2018)
11

"""
"*** YOUR CODE HERE 

***"

1. One or more base 
cases

2. One or more 
recursive calls 
with simpler 
arguments.

3. Using the 
recursive call to 
solve our larger 
problem.



Sum Digits

1   def sum_digits(n):
2 """Calculates the sum of the digits n
3 >>> sum_digits(8)
4 8
5 >>> sum_digits(18)
6 9
7 >>> sum_digits(2018)
8 11
9 """
10 if n < 10:
11     return n
12 else:
13     all_but_last, last = n // 10, n % 10
14     return sum_digits(all_but_last) + last



Order of Recursive Calls



1 def cascade(n):1 def cascade(n):
2    if n < 10:
3 print(n)

1 def cascade(n):
2    if n < 10:
3 print(n)
4    else:
5 print(n)
6 cascade(n // 10)
7 print(n)

Cascade

Goal: Print out a cascading tree of a positive integer n.

>>> cascade(486)
486
48
4
48
486
>>> cascade(48)
48
4
48
>>> cascade(4)
4

Ideas:
● If n is a single digit, just print it out!
● Otherwise, let cascade(n // 10) 

take care of the middle 
and print(n) around it

Demo



The Cascade Function

Each cascade frame is 
from a different call 
to cascade.

Until the Return value 
appears, that call has 
not completed.

Any statement can 
appear before or after 
the recursive call.

Output

123
12
1
12

Base case



Two Implementations of Cascade

● If two implementations are equally clear, then shorter is usually better

● In this case, the longer implementation might be more clear

● When learning to write recursive functions, put the base case/s first

1 def cascade(n):
2   if n < 10:
3 print(n)
4   else:
5 print(n)
6 cascade(n // 10)
7 print(n)

1 def cascade(n):
2   print(n)
3   if n >= 10:
4 cascade(n // 10)
5 print(n)

Demo



Fibonacci



Fibonacci Sequence

n 0 1 2 3 4 5 6 7 8 ... 30

fib(n) 0 1 1 2 3 5 8 13 21 ... 832040

+ + + + + + +



Fibonacci's rabbits

fib(1) == 1

fib(2) == 1

fib(3) == 2

fib(4) == 3

fib(5) == 5

fib(6) == 8



1 def fib(n):1 def fib(n):
2  if n == 0:
3  return 0
4  elif n == 1:
5  return 1

1 def fib(n):
2   if n == 0:
3 return 0
4   elif n == 1:
5 return 1
6   else:
7 return fib(n - 2) + fib(n - 1)

Fibonacci

Goal: Return the nth Fibonacci number.

n 0 1 2 3 4 5 6 7 8 ... 30

fib(n) 0 1 1 2 3 5 8 13 21 ... 832040

● The first two Fibonacci numbers are known; if we ask for the 
0th or 1st Fibonacci number, we know it immediately

● Otherwise, we sum up the previous two Fibonacci numbers

Ideas:

Demo



fib(n): a tree-recursive process

fib(5)

fib(3) fib(4)

fib(1) fib(2)

fib(0) fib(1)1

10

fib(2)

fib(1)fib(0)

0 1

fib(3)

fib(1) fib(2)

fib(0) fib(1)1

10

Fibonacci Call Tree



1 def fib(n):
2  if n == 0:
3  return 0
4  elif n == 1:
5  return 1
6  else:
7  return fib(n - 1) + 
fib(n - 2)

Broken Fibonacci

1 def broken_fib(n):
2  if n == 0:
3     return 0
4  # Missing base case!
5  else:
6     return broken_fib(n - 2) 
+ ………………………………..    broken_fib(n - 1)

broken_fib(3)

broken_fib(1)

broken_fib(-1)

broken_fib(5)

>>> broken_fib(5)
Traceback (most recent call last):
...
RecursionError: maximum recursion 
depth exceeded in comparison

a. Wrong value
b. Error



Broken fib(n)

fib(5)

fib(3)

fib(1)

fib(-1)

fib(-3)

Never computed!



Counting Partitions



Count Partitions

Goal: Count the number of ways to give out n ( > 0) pieces of chocolate if 
nobody can have more than m (> 0) pieces.

"How many different ways can I give out 6 pieces of chocolate
if nobody can have more than 4 pieces?"

>>> count_part(6, 4)

9

2 + 4 = 6
1 + 1 + 4 = 6

Largest 
Piece: 4

3 + 3 = 6
1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6

Largest 
Piece: 3

2 + 2 + 2 = 6
1 + 1 + 2 + 2 = 6
1 + 1 + 1 + 1 + 2 = 6

Largest 
Piece: 2

1 + 1 + 1 + 1 + 1 + 1 = 6Largest 
Piece: 1



Count Partitions

2 + 4
1 + 1 + 4

3 + 3
1 + 2 + 3
1 + 1 + 1 + 3

2 + 2 + 2
1 + 1 + 2 + 2
1 + 1 + 1 + 1 + 2

1 + 1 + 1 + 1 + 1 + 1



Count Partitions

Ideas:
Find simpler instances of the 
problem
Explore two possibilities:
● Use a 4
● Don’t use a 4

Solve two simpler problems:
● count_part(2, 4)
● count_part(6, 3)

Sum up the results of these 
smaller problems!



Count Partitions

Ideas:
Find simpler instances of the 
problem
Explore two possibilities:
● Use a 4
● Don’t use a 4

Solve two simpler problems:
● count_part(2, 4)
● count_part(6, 3)

Sum up the results of these 
smaller problems!

1 def count_part(n, m):
2  if 

3  else:
4    with_m = count_part(n-m, m)
5    wo_m = count_part(n, m - 1)
6    return with_m + wo_m



Count Partitions

(6, 4)

(-1, 3) (2, 2)

(2, 4) (6, 3)

(1, 1) (2,0)

(1, 0)(0, 1)

1 0

1

0

0

0

Use a 4 Don’t use a 4How do we know we’re done?

● If n is negative, 
then we cannot get 
to a valid partition

Use a 3 Don’t use a 3

(0, 2) (2, 1)

Use a 2 Don’t use a 2

(-2, 4) (2, 3)

Use a 4 Don’t use a 4

● If n is 0, then we 
have arrived at a 
valid partition

● If the largest 
piece we can use 
is 0, then we 
cannot get to a 
valid partition

4 + 4 + ... ≠ 6

4 + 2 = 6

...



Count Partitions

Ideas:
Explore two possibilities:
● Use a 4
● Don’t use a 4

Solve two simpler problems:
● count_part(2, 4)
● count_part(6, 3)

1 def count_part(n, m):
if n == 0:

return 1
elif n < 0:

return 0
elif m == 0:

return 0
else:

with_m = count_part(n - 
m, m)

wo_m = count_part(n, m - 1)
return with_m + wo_m

1 def count_part(n, m):
if n == 0:

return 1
elif n < 0:

return 0
elif m == 0:

return 0
else:

9    with_m = count_part(n-m, m)
10    wo_m = count_part(n, m - 1)
11    return with_m + wo_mo_m

Demo

Sum up the results of these 
smaller problems!
How do we know we’re done?
● If n is 0, then we have arrived at a valid partition
● If n is negative, then we cannot get to a valid partition
● If the largest piece we can use is 0, then we cannot get to a valid 

partition

1 def count_part(n, m):
2    if n == 0:
3 return 1
4    elif n < 0:
5 return 0

elif m == 0:
return 0

8    else:
9    with_m = count_part(n-m, m)
10    wo_m = count_part(n, m - 1)
11    return with_m + wo_m

1 def count_part(n, m):
2    if n == 0:
3 return 1
4    elif n < 0:
5 return 0
6    elif m == 0:
7 return 0
8    else:
9    with_m = count_part(n-m, m)
10    wo_m = count_part(n, m - 1)
11    return with_m + wo_m



Takeaways

● Tree recursion allows you to explore different possibilities

● Oftentimes, the recursive calls for tree recursion represent 
different choices

○ One such choice is “do I use this value, or do I try another?”

● Sometimes it is easier to start with the recursive cases, and see 
which base cases those lead you to



If Time - Speeding Up Recursion 
(Teaser for the ~Future~)



Back to Fib
Demo

fib(5)

fib(3) fib(4)

fib(1) fib(2)

fib(0) fib(1)1

10

fib(2)

fib(1)fib(0)

0 1

fib(3)

fib(1) fib(2)

fib(0) fib(1)1

10



Basic Idea to Improve:

1 def better_fib(n):
2  if n == 0:
3     return 0
4  elif n == 1:
5     return 1
6  elif already called better_fib(n):
7     return stored value
8  else:
9     store & return better_fib(n - 2) + better_fib(n - 1)



Summary

● Recursion has three main components
○ Base case/s: The simplest form of the problem
○ Recursive call/s: Smaller version of the problem
○ Use the solution to the smaller version of the problem to arrive at 

the solution to the original problem
● When working with recursion, use functional abstraction: assume the 

recursive call gives the correct result
● Tree recursion makes multiple recursive calls and explores different 

choices
● Use doctests and your own examples to help you figure out the 

simplest forms and how to make the problem smaller


