
Recursion Examples

Recursion (review)

Recursion (review)

Scenario: You are waiting in line for a concert. You can't see the front of
the line, but you want to know your place in the line.

Base case

Recursive call

Use the solution to
the smaller problem

You ask the person in front of you: “what is your
place in the line?”

When the person in front of you figures it out and
tells you, add one to that answer.

The person at the front, knows they are at the front!

Iteration vs. Recursion

● Iteration and recursion are somewhat related

● Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

def fact_iter(n):

 total, k = 1, 1

 while k <= n:

 total, k = total*k, k+1

 return total

def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n-1)

Iterative Recursive

Names: n, total, k, fact_iter Names: n, fact

Sum Digits

Let’s implement a recursive function to sum all the digits of `n`.
Assume `n` is positive.

def sum_digits(n):
"""Calculates the sum of

the digits `n`.
>>> sum_digits(8)
8
>>> sum_digits(18)
9
>>> sum_digits(2018)
11

"""
"*** YOUR CODE HERE

***"

1. One or more base
cases

2. One or more
recursive calls
with simpler
arguments.

3. Using the
recursive call to
solve our larger
problem.

Sum Digits

1 def sum_digits(n):
2 """Calculates the sum of the digits n
3 >>> sum_digits(8)
4 8
5 >>> sum_digits(18)
6 9
7 >>> sum_digits(2018)
8 11
9 """
10 if n < 10:
11 return n
12 else:
13 all_but_last, last = n // 10, n % 10
14 return sum_digits(all_but_last) + last

Order of Recursive Calls

1 def cascade(n):1 def cascade(n):
2 if n < 10:
3 print(n)

1 def cascade(n):
2 if n < 10:
3 print(n)
4 else:
5 print(n)
6 cascade(n // 10)
7 print(n)

Cascade

Goal: Print out a cascading tree of a positive integer n.

>>> cascade(486)
486
48
4
48
486
>>> cascade(48)
48
4
48
>>> cascade(4)
4

Ideas:
● If n is a single digit, just print it out!
● Otherwise, let cascade(n // 10)

take care of the middle
and print(n) around it

Demo

The Cascade Function

Each cascade frame is
from a different call
to cascade.

Until the Return value
appears, that call has
not completed.

Any statement can
appear before or after
the recursive call.

Output

123
12
1
12

Base case

Two Implementations of Cascade

● If two implementations are equally clear, then shorter is usually better

● In this case, the longer implementation might be more clear

● When learning to write recursive functions, put the base case/s first

1 def cascade(n):
2 if n < 10:
3 print(n)
4 else:
5 print(n)
6 cascade(n // 10)
7 print(n)

1 def cascade(n):
2 print(n)
3 if n >= 10:
4 cascade(n // 10)
5 print(n)

Demo

Fibonacci

Fibonacci Sequence

n 0 1 2 3 4 5 6 7 8 ... 30

fib(n) 0 1 1 2 3 5 8 13 21 ... 832040

+ + + + + + +

Fibonacci's rabbits

fib(1) == 1

fib(2) == 1

fib(3) == 2

fib(4) == 3

fib(5) == 5

fib(6) == 8

1 def fib(n):1 def fib(n):
2 if n == 0:
3 return 0
4 elif n == 1:
5 return 1

1 def fib(n):
2 if n == 0:
3 return 0
4 elif n == 1:
5 return 1
6 else:
7 return fib(n - 2) + fib(n - 1)

Fibonacci

Goal: Return the nth Fibonacci number.

n 0 1 2 3 4 5 6 7 8 ... 30

fib(n) 0 1 1 2 3 5 8 13 21 ... 832040

● The first two Fibonacci numbers are known; if we ask for the
0th or 1st Fibonacci number, we know it immediately

● Otherwise, we sum up the previous two Fibonacci numbers

Ideas:

Demo

fib(n): a tree-recursive process

fib(5)

fib(3) fib(4)

fib(1) fib(2)

fib(0) fib(1)1

10

fib(2)

fib(1)fib(0)

0 1

fib(3)

fib(1) fib(2)

fib(0) fib(1)1

10

Fibonacci Call Tree

1 def fib(n):
2 if n == 0:
3 return 0
4 elif n == 1:
5 return 1
6 else:
7 return fib(n - 1) +
fib(n - 2)

Broken Fibonacci

1 def broken_fib(n):
2 if n == 0:
3 return 0
4 # Missing base case!
5 else:
6 return broken_fib(n - 2)
+ ……………………………….. broken_fib(n - 1)

broken_fib(3)

broken_fib(1)

broken_fib(-1)

broken_fib(5)

>>> broken_fib(5)
Traceback (most recent call last):
...
RecursionError: maximum recursion
depth exceeded in comparison

a. Wrong value
b. Error

Broken fib(n)

fib(5)

fib(3)

fib(1)

fib(-1)

fib(-3)

Never computed!

Counting Partitions

Count Partitions

Goal: Count the number of ways to give out n (> 0) pieces of chocolate if
nobody can have more than m (> 0) pieces.

"How many different ways can I give out 6 pieces of chocolate
if nobody can have more than 4 pieces?"

>>> count_part(6, 4)

9

2 + 4 = 6
1 + 1 + 4 = 6

Largest
Piece: 4

3 + 3 = 6
1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6

Largest
Piece: 3

2 + 2 + 2 = 6
1 + 1 + 2 + 2 = 6
1 + 1 + 1 + 1 + 2 = 6

Largest
Piece: 2

1 + 1 + 1 + 1 + 1 + 1 = 6Largest
Piece: 1

Count Partitions

2 + 4
1 + 1 + 4

3 + 3
1 + 2 + 3
1 + 1 + 1 + 3

2 + 2 + 2
1 + 1 + 2 + 2
1 + 1 + 1 + 1 + 2

1 + 1 + 1 + 1 + 1 + 1

Count Partitions

Ideas:
Find simpler instances of the
problem
Explore two possibilities:
● Use a 4
● Don’t use a 4

Solve two simpler problems:
● count_part(2, 4)
● count_part(6, 3)

Sum up the results of these
smaller problems!

Count Partitions

Ideas:
Find simpler instances of the
problem
Explore two possibilities:
● Use a 4
● Don’t use a 4

Solve two simpler problems:
● count_part(2, 4)
● count_part(6, 3)

Sum up the results of these
smaller problems!

1 def count_part(n, m):
2 if

3 else:
4 with_m = count_part(n-m, m)
5 wo_m = count_part(n, m - 1)
6 return with_m + wo_m

Count Partitions

(6, 4)

(-1, 3) (2, 2)

(2, 4) (6, 3)

(1, 1) (2,0)

(1, 0)(0, 1)

1 0

1

0

0

0

Use a 4 Don’t use a 4How do we know we’re done?

● If n is negative,
then we cannot get
to a valid partition

Use a 3 Don’t use a 3

(0, 2) (2, 1)

Use a 2 Don’t use a 2

(-2, 4) (2, 3)

Use a 4 Don’t use a 4

● If n is 0, then we
have arrived at a
valid partition

● If the largest
piece we can use
is 0, then we
cannot get to a
valid partition

4 + 4 + ... ≠ 6

4 + 2 = 6

...

Count Partitions

Ideas:
Explore two possibilities:
● Use a 4
● Don’t use a 4

Solve two simpler problems:
● count_part(2, 4)
● count_part(6, 3)

1 def count_part(n, m):
if n == 0:

return 1
elif n < 0:

return 0
elif m == 0:

return 0
else:

with_m = count_part(n -
m, m)

wo_m = count_part(n, m - 1)
return with_m + wo_m

1 def count_part(n, m):
if n == 0:

return 1
elif n < 0:

return 0
elif m == 0:

return 0
else:

9 with_m = count_part(n-m, m)
10 wo_m = count_part(n, m - 1)
11 return with_m + wo_mo_m

Demo

Sum up the results of these
smaller problems!
How do we know we’re done?
● If n is 0, then we have arrived at a valid partition
● If n is negative, then we cannot get to a valid partition
● If the largest piece we can use is 0, then we cannot get to a valid

partition

1 def count_part(n, m):
2 if n == 0:
3 return 1
4 elif n < 0:
5 return 0

elif m == 0:
return 0

8 else:
9 with_m = count_part(n-m, m)
10 wo_m = count_part(n, m - 1)
11 return with_m + wo_m

1 def count_part(n, m):
2 if n == 0:
3 return 1
4 elif n < 0:
5 return 0
6 elif m == 0:
7 return 0
8 else:
9 with_m = count_part(n-m, m)
10 wo_m = count_part(n, m - 1)
11 return with_m + wo_m

Takeaways

● Tree recursion allows you to explore different possibilities

● Oftentimes, the recursive calls for tree recursion represent
different choices

○ One such choice is “do I use this value, or do I try another?”

● Sometimes it is easier to start with the recursive cases, and see
which base cases those lead you to

If Time - Speeding Up Recursion
(Teaser for the ~Future~)

Back to Fib
Demo

fib(5)

fib(3) fib(4)

fib(1) fib(2)

fib(0) fib(1)1

10

fib(2)

fib(1)fib(0)

0 1

fib(3)

fib(1) fib(2)

fib(0) fib(1)1

10

Basic Idea to Improve:

1 def better_fib(n):
2 if n == 0:
3 return 0
4 elif n == 1:
5 return 1
6 elif already called better_fib(n):
7 return stored value
8 else:
9 store & return better_fib(n - 2) + better_fib(n - 1)

Summary

● Recursion has three main components
○ Base case/s: The simplest form of the problem
○ Recursive call/s: Smaller version of the problem
○ Use the solution to the smaller version of the problem to arrive at

the solution to the original problem
● When working with recursion, use functional abstraction: assume the

recursive call gives the correct result
● Tree recursion makes multiple recursive calls and explores different

choices
● Use doctests and your own examples to help you figure out the

simplest forms and how to make the problem smaller

