Mutable Values

Announcements

Obijects

(Demo)

Objects

* Objects represent information

Objects

* Objects represent information

* They consist of data and behavior, bundled together to create abstractions

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions

®* Objects can represent things, but also properties, interactions, & processes

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
®* Objects can represent things, but also properties, interactions, & processes

* A type of object is called a class; classes are first-class values in Python

Objects

* Objects represent information

* They consist of data and behavior, bundled together to create abstractions

®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python

®* Object-oriented programming:

Objects

* Objects represent information

* They consist of data and behavior, bundled together to create abstractions

®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

® Special syntax that can improve the composition of programs

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

® Special syntax that can improve the composition of programs

e In Python, every value is an object

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

® Special syntax that can improve the composition of programs
e In Python, every value is an object

e A1l objects have attributes

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

® Special syntax that can improve the composition of programs
e In Python, every value is an object

e A1l objects have attributes

* A lot of data manipulation happens through object methods

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

® Special syntax that can improve the composition of programs
e In Python, every value is an object

e A1l objects have attributes

* A lot of data manipulation happens through object methods

* Functions do one thing; objects do many related things

Example: Strings

(Demo)

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

o ,1,2,3,4,5,6 7, 8,9, A,B,C,D,E F
O[NUL | SOH [STX |ETX | EOT |ENQ |ACK |BEL| BS | HT | LF | VT | FF | CR | SO | SI
1{DLE|DC1|DC2|DC3|DC4 |NAK | SYN |ETB [CAN | EM |SUB|ESC| FS | GS | RS | US
2 ! " # $ % & ' () * + ' - /
3ol 12|34 |5|6]|7]|8]|°9 : ; < | =]|>17?
4 @ | A | B C|D|E|F]|G H I J | K LIM|NJ|O
5 P Q| R|S]| T]|U VIW|X]|Y]| Z [\ 1 o
6| - |a|lb|c|d|le]|]f|I9|h|i]|ij|k]|]1l1]|m|[n]o
7] p q r s t u v | w | x y z { | } ~ |DEL

Representing Strings: the ASCII Standard

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 ,1,2,3;4,5,6 ;7,8 ,9 A ,8B C, D, E | F
NUL | SOH |STX |ETX |EOT |ENQ |ACK |[BEL | BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN |ETB |CAN | EM |SUB |ESC| FS | GS | RS | US

! vl # | $ | % | & () | x| + | - /
o|1|2]|3|4)|5|6|7]|8]°9 : ; < | =1 > ?

@| A| B C|D|E|F]|G H I J | K L|M]|N 0

P|IQ|R|S]|T]|U VIW]| X]|Y]| Z [\ 1 o

~la|lb|c|d|e|f|9|h|i]|Jj|k]|]l]|m]n]|o

o] q r s t u v | w | x y z { | } ~ |DEL

Representing Strings: the ASCII Standard

P P PP OO O OC
P PO O RFrRPr PO O
PR O FrRPr O FrPrR o Fr o

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 ,1,2,3;4,5,6 ;7,8 ,9 A ,8B C, D, E | F
NUL | SOH |STX |ETX |EOT |ENQ |ACK |[BEL | BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN |ETB |CAN | EM |SUB |ESC| FS | GS | RS | US

! vl # | $ | % | & () | x| + | - /
o|1|2]|3|4)|5|6|7]|8]°9 : ; < | =1 > ?

@| A| B C|D|E|F]|G H I J | K L|M]|N 0

P|IQ|R|S]|T]|U VIW]| X]|Y]| Z [\ 1 o

~la|lb|c|d|e|f|9|h|i]|Jj|k]|]l]|m]n]|o

o] q r s t u v | w | x y z { | } ~ |DEL

Representing Strings: the ASCII Standard

P P PP OO O OC
P PO O RFrRPr PO O

PR O FrRPr O FrPrR o Fr o

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 ,1,2,3;4,5,6 ;7,8 ,9 A ,8B C, D, E | F
NUL | SOH |STX |ETX |EOT |ENQ |ACK |[BEL | BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN |ETB |CAN | EM |SUB |ESC| FS | GS | RS | US

! vl # | $ | % | & () | x| + | - /
o|1|2]|3|4)|5|6|7]|8]°9 : ; < | =1>17?

@| A| B C|D|E|F]|G H I J | K L|M]|N 0

P|IQ|R|S]|T]|U VIW]| X]|Y]| Z [\ 1 o

~la|lb|c|d|e|f|9|h|i]|Jj|k]|]l]|m]n]|o

o] q r s t u v | w | x y z { | } ~ |DEL

16 columns:

4 bits

Representing Strings: the ASCII Standard

P P PP OO O OC
P PO O RFrRPr PO O
PR O FrRPr O FrPrR o Fr o

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
NUL | SOH [STX |ETX | EOT |ENQ [ACK |BEL| BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB|CAN | EM |SUB|ESC| FS | GS | RS | US

! v | # | $ | % | & ' () | x| + | - /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U vV W X Y yA [\ 1 A -
~lalblc|ld|]e|f|l9|h|i1]|]ij|k|1T]|m|n]|o
o] q r s t u v | w | x y z { | } ~ |DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart
0 1 2 3 4 5 6 7 8 9 A B C D E F

000 T o[nuL[soH[sTx[ETX [E0T [ENQ [ACK[BEL| BS [HT [LF [vT [FF [cR [so | sI
001 “| 1|pLE[pc1|pcz2|pc3|pca [naK [syn|[ETB[can| EM [suB|ESc| Fs [Gs | Rs | us
010 a2 L | o | #] $ | % & | Cl) x|+]- 7
011 m|3lof1]23]a[s]6|[7]s]o|:]:i[<]=]>]?2
100 (4 efalB]c|p]E]JFJalH]TI]a[k][L][m][N]oO
101 Z|5/P|lQf[R[Ss|T]JU|JV]|W[X|[Y[Z]T]|]\N]|]T]A~]-
110 |6l ~|al[blcld|le|lf]oaln|[ililk|[1v][m]n]o
111 ®|7[p[a|r[s[t[ulv|w|[x |y [z €] 1][7¥]-~ [0

16 columns: 4 bits

* Layout was chosen to support sorting by character code
®* Rows indexed 2-5 are a useful 6-bit (64 element) subset

Representing Strings: the ASCII Standard

P P PP OO O OC
P PO O RFrRPr PO O
PR O FrRPr O FrPrR o Fr o

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
NUL | SOH [STX |ETX | EOT |ENQ [ACK |BEL| BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB|CAN | EM |SUB|ESC| FS | GS | RS | US

! " # $ % & ' () * + ' - /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U vV W X Y yA [\ 1 A -
~lalblc|ld|]e|f|l9|h|i1]|]ij|k|1T]|m|n]|o
o] q r s t u v | w | x y z { | } ~ |DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element)

subset

* Control characters were designed for transmission

Representing Strings: the ASCII Standard

P P PP OO O OC
P PO O RFrRPr PO O
PR O FrRPr O FrPrR o Fr o

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

"Line feed" n
ASCII Code Chart (\n)
0 1 2 3 4 5 6 7 8 9 A B C D E F
NUL | SOH |STX |ETX [EOT |ENQ |ACK [BEL| BS | HT | LF'| vT [FF | ¢cR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB|CAN | EM |SUB|ESC| FS | GS | RS | US

! " # |1 %$| % | & ' () * + ’ - /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U vV W X Y yA [\ 1 A -
~la|lb|c|d|e|f|9|h|i]|Jj|k]|]l]|m]n]|o
o] q r s t u v | w | x y z { | } ~ |DEL
16 columns: 4 bits
* Layout was chosen to support sorting by character code
®* Rows indexed 2-5 are a useful 6-bit (64 element) subset

* Control characters were designed for transmission

Representing Strings: the ASCII Standard

P P PP OO O OC
P PO O RFrRPr PO O
PR O FrRPr O FrPrR o Fr o

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

"Bell" a "Line feed" n
[(\a) SCII Code Chart (\n)
0 1 2 3 4 5 7 8 9 A B C D E F
NUL | SOH |STX |ETX [EOT |ENQ |ACKTBEL| BS | HT | LF'| vT [FF | ¢CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB|CAN | EM |SUB|ESC| FS | GS | RS | US

! " # |1 %$| % | & ' () * + ’ - /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U vV W X Y Z [\ 1 A -
~la|lb|c|d|e|f|9|h|i]|Jj|k]|]l]|m]n]|o
o] q r s t u v | w | x y z { | } ~ |DEL
16 columns: 4 bits
* Layout was chosen to support sorting by character code
®* Rows indexed 2-5 are a useful 6-bit (64 element) subset

* Control characters were designed for transmission

Representing Strings: the ASCII Standard

P P PP OO O OC
P PO O RFrRPr PO O
PR O FrRPr O FrPrR o Fr o

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

"Bell" a "Line feed" n
[(\a) SCII Code Chart (\n)
0 1 2 3 4 5 7 8 9 A B C D E F
NUL | SOH |STX |ETX [EOT |ENQ |ACKTBEL| BS | HT | LF'| vT [FF | ¢CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB|CAN | EM |SUB|ESC| FS | GS | RS | US

! " # |1 %$| % | & ' () * + ’ - /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U vV W X Y Z [\ 1 A -
~la|lb|c|d|e|f|9|h|i]|Jj|k]|]l]|m]n]|o
o] q r s t u v | w | x y z { | } ~ |DEL
16 columns: 4 bits
* Layout was chosen to support sorting by character code
®* Rows indexed 2-5 are a useful 6-bit (64 element) subset

* Control characters were designed for transmission

(Demo)

Representing Strings: the Unicode Standard

Representing Strings: the Unicode Standard

o e | B B HE | el | R
8071 8072 8073 8074 8075 8076 8077 8078
it | | H | BRI | M |
8171 8172 8173 8174 8175 8176 8177 8178
AR HE b | B B |
8271 8272 8273 8274 8275 8276 8217 8278
| B\ R | | 08 fa | 2E
8371 8372 8373 8374 8375 8376 8377 8378

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1

e | | | T | | |
8071 8072 8073 8074 8075 8076 8077 8078
AL
817 8172 8173 8174 8175 8176 8177 8178
AR A
8271 8272 8273 8274 8275 8276 8277 8278
SR E:
8371 8372 8373 8374 8375 8376 8377 8378
AW A A

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1

® 150 scripts (organized)

o e B B R el | R
8071 8072 8073 8074 8075 8076 8077 8078
it | | H | BRI | M |
8171 8172 8173 8174 8175 8176 8177 8178
BR | | M| e o | B) M

8272 8274 8275 8276 8217 8278

8374 8375 8376 8377 8378

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

I B | iy | | 5

8074 8075 8076 8077 8078

MR R | B | M s

8174 8175 8176 8177 8178

: 2]

8271 8272 8273 8274 8275 8276 8277 8278
% B9 || 2 TZS fa] | =2
N2 V] AN -7
8371 8372 8373 8374 8375 8376 8377 8378
== Y,

o | H
er (o]

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

o e | B B HE | el | R
8071 8072 8073 8074 8075 8076 8077 8078
it | | H | BRI | M |
8171 8172 8173 8174 8175 8176 8177 8178
ARG ||| OR | B |
8271 8272 8273 8274 8275 8276 8217 8278
| B\ R | | 08 fa | 2E
8371 8372 8373 8374 8375 8376 8377 8378
AN AR AL !

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

e | BB | B | =

8074 8075 8076

ik

8077

AR | B

8174 8175 8176

—

FH

8177

8274 8275 8276

1l
L~

8217

4
70
8374 8375 8376

o]

8377

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

LATIN CAPITAL LETTER A

o e | B B HE | el | R
8071 8072 8073 8074 8075 8076 8077 8078
it | | H | BRI | M |
8171 8172 8173 8174 8175 8176 8177 8178
ARG ||| OR | B |
8271 8272 8273 8274 8275 8276 8217 8278
8371 8372 8373 8374 8375 8376 8377 8378
AN AR AL !

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1 %,z ﬁg Hfﬁ H% EHH ngi Ea‘
B | e | |

8172 8173 8174 8175 8176 8177 8178

X

=3
1=
=
=3
=1
=
N

® 150 scripts (organized)

* Enumeration of character properties,
such as case

B
o8
=
=

e Supports bidirectional displav ord o ¥ | e g | S| By
uppor s l lrec lona lsp ay Or er 8271 8272 8273 8274 8275 8276 8277 8278
e A canonical name for every character | ek | b | e | y= e
y 2B |\ HR| & S | 2R

8371 8372 8373 8374 8375 8376 8377 8378

R Rk | % 2 |

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

LATIN CAPITAL LETTER A

DIE FACE-6

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1 %%— %_E HE H:% Et_llj ngi E:::
8073 8074 80/75\ 8076 8077 80:?1
k2 | Fex | e |
8172 8173 8174 8175 8176 8177 8178
e e Of | B |
8274 8275 8276 8277 8278

8374 8375 8376 8377 8378

X

=3
1=
=
=3
=1
=
N

® 150 scripts (organized)

* Enumeration of character properties,
such as case

B
o8
=
=

il
fr
Sl s

® Supports bidirectional display order

o
[
=
o
N
=
N

* A canonical name for every character

o
@
=
3
@
9
]

k- e | s | e | e
I == =

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

&

C

LATIN CAPITAL LETTER A

DIE FACE-6

EIGHTH NOTE

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

LATIN CAPITAL LETTER A
DIE FACE-6

EIGHTH NOTE

| | || L | o | | R
B o | HH | B | AW B
8071 8072 8073 8074 8075 8076 8077 8078
AR R R R B e |
817 8172 8173 8174 8175 8176 8177 8178
ER o | b e | S B
S g2 L=

8271 8272 8273 8274 8275 8276 8277 8278
= | - | e | - | —= | HKE
=3 70 | s 2
= | B2 | A | A

8371 8372 8373 8374 8375 8376 8377 8378
b m g = e g =+ | K= | A5 =]

=) (=]
DR IB IR | 22| & | H | B
http://ian-albert.com/unicode_chart/unichart-chinese.jpg

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

LATIN CAPITAL LETTER A
DIE FACE-6

EIGHTH NOTE

8074 8075 8076

AR | B

8174 8175 8176

8274 8275 8276

)
70
8374 8375 8376

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

LATIN CAPITAL LETTER A
DIE FACE-6

EIGHTH NOTE

8074 8075 8076

AR | B

8174 8175 8176

8274 8275 8276

| 22 | A

8374 8375 8376

(Demo)

Mutation Operations

Some Objects Can Change

[Demo]

Some Objects Can Change

[Demo]

First example in the course of an object changing state

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

v

same_person L-——*'\fi:i’

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation
o)

A
6

same_person | — \Q/

BABY

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

J

®)

same_person L___>\\f;//b
-

BABY

Unicode
character
name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

same_person | — <%a%§
w J

Unicode
character
name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘
same_person | —> &)
-
Unicode
character
GIRL

name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘

same_person | —> feo &

Unicode
character

WOMAN Name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘
same_person | — |

Unicode
OLDER character

WOMAN name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘
same_person | — (/& &
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘
same_person | — (/& &
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘
same_person | — (/& &
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

{Demo}

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)
4

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)

4

>>> mystery(four)

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope
>>> four = [1, 2, 3, 4]
>>> len(four)

>>> mystery(four)
>>> len(four)

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s):
>>> len(four) s.pop()

4 s.pop()

>>> mystery(four)

>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

>>> four = [1, 2, 3, 4]

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> another_mystery() # No arguments!

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> another_mystery() # No arguments!
>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)
>>> len(four)

2

>>> four = [1, 2, 3, 4] def another_mystery():
>>> len(four) four.pop()

4 four.pop()

>>> another_mystery() # No arguments!
>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Tuples

(Demo)

Tuples are Immutable Sequences

Tuples are Immutable Sequences

Immutable values are protected from mutation

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> ooze()

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> o0oze()
>>> turtle

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> o0oze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> o0oze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> ooze() >>> ooze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> oozel() >>> oozel()
>>> turtle >>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> oozel() >>> oozel()
>>> turtle >>> turtle

(1, 2, 3) ['Anything could be inside!']

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can J zzz :8ii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz gaii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X + X

Name change:
>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X

Name change:

>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle =

(1, 2, 3)

>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:

change turtle's binding

00ze can

1

>>> turtle = [1, 2, 3]

>>> oozel()

>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

>>> X
>>> X
4

>>> X

+

2
X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz gaii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4

>>> X 3
>>> X + X

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz gaii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4
>>> X 3
>>> X + X
6

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4
>>> X = 3
>>> X + X
6

Name change: Object mutation:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2

>>> X + X >>> X + X
4 . .
Name change: Object mutation:
>>> X = 3
>>> X + X >>> X + X

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> X = [1, 2]
>>> X + X >>> X + X
4 . .
Name change: Object mutation:
>>> X = 3
>>> X + X >>> X + X

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]

>>> X + X >>> X + X
Name change: ! _ Object mutation: 11, 2, 1, 21

>>> X = 3

>>> X + X >>> X + X

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>>X=[1, 2]
>>> X + X >>> X + X
. 4 . . . [1; 2} 1! 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz gaii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>>X=[1, 2]
>>> X + X >>> X + X
. 4 . . . [1; 2} 1! 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X

6 [1, 2, 3, 1, 2, 3]

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)
>>> s[0] = 4

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)
>>> s[0] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR >>> g

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR >>> g

([4, 21, 3)

Mutation

Sameness and Change

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces

*A rational number is just its numerator and denominator

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator
This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

[10]
a

>>> Q
>>> D

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]
>>> b = a
>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]
>>> p = a
>>> g ==
True

>>> a.append(20)

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]

>>> b = g

>>> g ==

True

>>> a.append(20)
>>> Qq

[10, 20]

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]

>>> b = g

>>> g ==

True

>>> a.append(20)
>>> Qq

[10, 20]

>>> Db

[10, 20]

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]
>>> p = a
>>> g ==
True

>>> a.append(20)
>>> g

[10, 20]
>>> D

[10, 20]
>>> g ==
True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10]
>>> b = g
>>> g ==
True

>>> a.append(20)
>>> Qq

[10, 20]
>>> Db

[10, 20]

>>> g ==
True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]
>>> p = a

>>> g ==

True

>>> a.append(20)
>>> g

[10, 20]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]
>>> b = 3 >>> b = [10]
>>> g ==

True

>>> a.append(20)

>>> g

[10, 20]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]
>>> b = a >>> b = [10]
>>> g == >>> g ==
True True

>>> a.append(20)

>>> 3

[10, 20]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g

[10, 20]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> a >>> a

[10, 20] [10]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g >>> g

[10, 20] [10]

>>> b >>> b

[10, 20] [10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g >>> g

[10, 20] [10]

>>> b >>> b

[10, 20] [10, 20]

>>> a == >>> g ==

True False

|dentity Operators

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)

Mutable Default Arguments are Dangerous

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

s £()

1

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

>>> ()

1

>>> ()

2

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

>>> ()

1

>>> ()

2

>>> ()
3

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame func f(s) [parent=Global]
s.append(3) ¢ ,////”%>

e return len(s) %t .
| I I) _ 3 3 3
. f() fl: f [parent=Global]
1 s |
>>> () Return
2 value
>>> f()
3 f2: f [parent=Global]
S L
Return 2
value

f3: f [parent=Global]
S L

Return 3
value

pythontutor.com/composingprograms.html#code=def%20%285%3D []%29%3A%0A%20%20%20%20s . appendss283%29%0A%20%20%20%20 returns201en%s285%29%0A%20%20%20%20%0A F%28%29%0A F%28%29%0A F%28%29&mode=d isp lay&origin=composingprogranms. js&cumulative=t rue&py=3&rawInputLstISON=[]&curInstr=

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame /f—-?func f(s) [parent=Global]
e s.append(3) f -
IS
e return len(s) o 11 |2
= s . — 3 3 3
oo () fl: f [parent=Global]
1 S |
>>> () Return
2 value | Each time the function
>>> f() is called, s is bound
3 f2: f [parent=Global] to the same value!
S L
Return 2
value |

f3: f [parent=Global]
S L

Return 3
value »

pythontutor.com/composingprograms.html#code=def%20%285%3D []%29%3A%0A%20%20%20%20s . appendss283%29%0A%20%20%20%20 returns201en%s285%29%0A%20%20%20%20%0A F%28%29%0A F%28%29%0A F%28%29&mode=d isp lay&origin=composingprogranms. js&cumulative=t rue&py=3&rawInputLstISON=[]&curInstr=

Lists

Lists in Environment Diagrams

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Operation

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t =[5, 6]

Operation Example

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t =[5, 6]

Operation Example Result

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t =[5, 6]
Operation Example Result
append adds one s.append(t)
element to a list t=20

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t =[5, 6]
Operation Example Result Global
append adds one s.append(t)
element to a list t=20

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global

list
0 1
2 3
list
0 1
5 | ¥Xo

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s - [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

Global

list
0 1
2 3
list
0 1
5 | ¥Xo

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s - [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

addition & slicing
create new lists
containing existing
elements

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements

b[1]1[1] = ©

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements

b[1]1[1] = ©

Global

list

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\ @
2
list list
0 0
list /
0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\ @
2
list list
0 0
list /
0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list

\ @
2
list

0
5

list /

0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list

\ @
2
list

0
5

list /

0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result Global
append adds one s.append(t) s - [2, 3, [5, 6]] s
element to a list t=20 t -0 t
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list b
addition & slicing a=-s + [t]
create new lists b =all:]
containing existing all]l =9
elements b[1][1] =0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
_____—‘\‘\\\\\‘____* 0
2
list
0
5
list /
0 1 2
> e/
list
0 1

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\@ 1
2 3
list
(/] 1
5 | ¥Xo
list /
(/] 1 2
> |'xa|”
list
0 1

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s - [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]

Global

—

list
\@ 1
2 3
list
(/] 1
5 | ¥Xo
list /
(/] 1 2
> |'xa|”
list
0 1

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

list

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

list
0 1

2 X0
list
0 1

2 3
list
0 1

5 6

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s » [2, 0]
also creates a new s[1] = 0 t - [2, 3]

list containing
existing elements

list
0 1

2 X0
list
0 1

2 3
list
0 1

5 6

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = @ t - [5, 0]
to another list
addition & slicing a=s + [t] s - [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2,9, [5 0]l
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

list

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list

Xo

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t s - [5, 6, 2, 5, 6]
replaces a slice with [s[3:] =t t - [5, 0]

new values

tl1] =0

list

Xo

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

removes & returns
last element

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

removes & returns |t = s.pop()
last element

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

pop removes & returns [t = s.pop()

s - [
the last element t - 3

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

pop removes & returns [t = s.pop() s - [
the last element t -3

remove removes the
first element equal
to the argument

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]

pop removes & returns
the last element

t = s.pop()

remove removes the
first element equal
to the argument

t.extend(t)
t.remove(5)

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]

pop removes & returns [t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

slice assignment can
remove elements from
a list by assigning
[1 to a slice.

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]

to the argument

slice assignment can |s[:1] = []
remove elements from |[t[0:2] = []
a list by assigning
[1 to a slice.

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

slice assignment can |s[:1] = [] s - [3]
remove elements from |[t[0:2] = [] t - []

a list by assigning
[1 to a slice.

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3] Global list

t[1:3] = [t] 0 1
t.extend(t) tie—T— 1 2

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1’ 2’ 3] Global list

t[1:3] = [t] 0 1
t.extend(t) tie—T— 1 2

list /

0
[t] evaluates to: /

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3] list

t[1:3] = [t] Stobal) =

t.extend(t) tie—T— 1
list /
V4

[t] evaluates to:

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t) t

[t] evaluates to:

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

Global

t ~—

list

0

1

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

Global

t ~—

list

0

1

[T

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

Global

t ~—

list

0

1

[T

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams
t =11, 2, 3] Global LSt N Sz

t[1:3] = [t] 0 1 2 1 2
t.extend(t) t T 1 % : 1

t = [[1l 2]7 [3; 4]] Global list list
t[0].append(t[1:2]) A 0 1 ' @3
|
list
0 1

Lists in Lists in Lists in Environment Diagrams

t=11,72 3] Global list N

t[1:3] = [t] 2 T >
t.extend(t) t | 1 %

7
[T
t = [[1, 2], [3, 4]] Global list
t[0].append(t[1:2]) e 0 1
T
!
list
0 1

Lists in Lists in Lists in Environment Diagrams

t=11,72 3] Global list N

t[1:3] = [t] 2 T >
t.extend(t) t | 1 %

7
[T
t = [[1, 2], [3, 4]] Global list
t[0].append(t[1:2]) e 0 1
T
!
list
0 1

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3] lis
e11:3] = [t] Global : t 1\ . /1
t.extend(t) tie—T— 1 % : 1
7 N
[T
(1, [...1, 1, [...]]
t = [[1, 2], [3, 4]] Global %St : 1®iSt
t[0].append(t[1:2]) N 3 4
T
| J
list lis
0 1 2 0 l
1 2 —
[(1, 2, [[3, 4111, [3, 411

