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Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

® Special syntax that can improve the composition of programs
e In Python, every value is an object

e A1l objects have attributes

* A lot of data manipulation happens through object methods

* Functions do one thing; objects do many related things
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® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

I B | iy | | 5

8074 8075 8076 8077 8078

MR R | B | M s

8174 8175 8176 8177 8178

: 2 ]

8271 8272 8273 8274 8275 8276 8277 8278
% B9 || 2 TZS fa] | =2
N2 V] AN -7
8371 8372 8373 8374 8375 8376 8377 8378
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® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order
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® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character
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Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character
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Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character
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Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘
same_person | — (/& &
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

{Demo}



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)
4



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)

4

>>> mystery(four)



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope
>>> four = [1, 2, 3, 4]
>>> len(four)

>>> mystery(four)
>>> len(four)
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A function can change the value of any object in its scope
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Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
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Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)
>>> len(four)

2

>>> four = [1, 2, 3, 4] def another_mystery():
>>> len(four) four.pop()

4 four.pop()

>>> another_mystery() # No arguments!
>>> len(four)
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Immutable values are protected from mutation

>>> turtle =

(1, 2, 3)

>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:

change turtle's binding

00ze can

1

>>> turtle = [1, 2, 3]

>>> oozel()

>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

>>> X
>>> X
4

>>> X

+

2
X
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Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
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>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
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Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR >>> g

([4, 21, 3)
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This view is no longer valid in the presence of change
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True False
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|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)
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Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

>>> ()

1

>>> ()

2

>>> ()
3



Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame func f(s) [parent=Global]
s.append(3) ¢ ,////”%>

e return len(s) %t .
| I I ) _ 3 3 3
. f() fl: f [parent=Global]
1 s |
>>> () Return
2 value
>>> f()
3 f2: f [parent=Global]
S L
Return 2
value

f3: f [parent=Global]
S L

Return 3
value
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Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame /f—-?func f(s) [parent=Global]
e s.append(3) f -
IS
e return len(s) o 11 |2
= s . — 3 3 3
oo () fl: f [parent=Global]
1 S |
>>> () Return
2 value | Each time the function
>>> f() is called, s is bound
3 f2: f [parent=Global] to the same value!
S L
Return 2
value |

f3: f [parent=Global]
S L

Return 3
value »

pythontutor.com/composingprograms.html#code=def%20%285%3D []%29%3A%0A%20%20%20%20s . appendss283%29%0A%20%20%20%20 returns201en%s285%29%0A%20%20%20%20%0A F%28%29%0A F%28%29%0A F%28%29&mode=d isp lay&origin=composingprogranms. js&cumulative=t rue&py=3&rawInputLstISON=[]&curInstr=



Lists



Lists in Environment Diagrams



Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]



Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Operation




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t =[5, 6]

Operation Example




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t =[5, 6]

Operation Example Result




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t =[5, 6]
Operation Example Result
append adds one s.append(t)
element to a list t=20




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t =[5, 6]
Operation Example Result Global
append adds one s.append(t)
element to a list t=20




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global

list
0 1
2 3
list
0 1
5 | ¥Xo




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s - [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

Global

list
0 1
2 3
list
0 1
5 | ¥Xo




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s - [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

addition & slicing
create new lists
containing existing
elements

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements

b[1]1[1] = ©

Global




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements

b[1]1[1] = ©

Global

list




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\ @
2
list list
0 0
list /
0




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\ @
2
list list
0 0
list /
0




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list

\ @
2
list

0
5

list /

0




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list

\ @
2
list

0
5

list /

0




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result Global
append adds one s.append(t) s - [2, 3, [5, 6]] s
element to a list t=20 t -0 t
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list b
addition & slicing a=-s + [t]
create new lists b =all:]
containing existing all]l =9
elements b[1][1] =0




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
_____—‘\‘\\\\\‘____* 0
2
list
0
5
list /
0 1 2
> e/
list
0 1




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\@ 1
2 3
list
(/] 1
5 | ¥Xo
list /
(/] 1 2
> |'xa|”
list
0 1




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s - [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]

Global

—

list
\@ 1
2 3
list
(/] 1
5 | ¥Xo
list /
(/] 1 2
> |'xa|”
list
0 1




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

list




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

list
0 1

2 X0
list
0 1

2 3
list
0 1

5 6




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s » [2, 0]
also creates a new s[1] = 0 t - [2, 3]

list containing
existing elements

list
0 1

2 X0
list
0 1

2 3
list
0 1

5 6




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = @ t - [5, 0]
to another list
addition & slicing a=s + [t] s - [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2,9, [5 0]l
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

list




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list

Xo




Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t s - [5, 6, 2, 5, 6]
replaces a slice with [s[3:] =t t - [5, 0]

new values

tl1] =0

list

Xo




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]



Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]



Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

removes & returns
last element




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

removes & returns |t = s.pop()
last element




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

pop removes & returns [t = s.pop()

s - [
the last element t - 3




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

pop removes & returns [t = s.pop() s - [
the last element t -3

remove removes the
first element equal
to the argument




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]

pop removes & returns
the last element

t = s.pop()

remove removes the
first element equal
to the argument

t.extend(t)
t.remove(5)




Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]

pop removes & returns [t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

slice assignment can
remove elements from
a list by assigning
[1 to a slice.




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]

to the argument

slice assignment can |s[:1] = []
remove elements from |[t[0:2] = []
a list by assigning
[1 to a slice.




Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

slice assignment can |s[:1] = [] s - [3]
remove elements from |[t[0:2] = [] t - []

a list by assigning
[1 to a slice.




Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])
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