Linked Lists & Trees

By Chris Allsman from Berkeley cs61a

Linked Lists

e A simple but powerful data structure
e Can be used to implement other data structures, e.g., stack, queues
® Fastinsertions/deletions, etc.

Linked List Definition

A Linked List is either:
e Empty
e Composed of a first element and the rest of the linked list

Value of first ST : :
is the : /I : : 2 ——— 8 List terminated
number 1 L. : Bl with an empty
. . linked list

first rest first rest first rest

\ 4

Linked lists are

r ntain
est contains a sequences where each

pointer to a linked list value is the first element

of a pair

Creating Linked Lists

We'll define a linked list recursively by making a constructor that
takes in a first and rest value

: I'9 —~3N

first rest first rest first rest

Link (T
Link (7T , Link(2,
Link (1 , Link(2, Link(3, empty linked list))

The Link Class

class Link: You should not assume the represen-
B tation here. It could be I'm empty™
empty = (

def __init__(self, first, rest=empty): the empty list

assert rest 1s Link.empty or isinstance(rest, Link)
self first = first

first -> Ist[0]
self rest = rest

>>> Ink = Link(5, Link(6,
>>>]nk rest rest first
/

>>> Ink.rest.rest.rest is Link.empty %;miiﬁ;?

True

rest -> Ist[1]]
Ink is Link.empty -> not Ist

Link {7/
first gives elements in

the list, .rest traverses

You Try:

class Link:

empty = ()

def __init__(self, first,
rest=empty) :

self first = first

self rest = rest

>>> g = Link(71, Link(2, Link(]
>>> b = Link(3, Link(2, Link(1)))
>>> combined = Link(a, Link(b)

How would you retrieve the element 3?

o1 B~ WO NN =

. comblned.
. comblned.
. comblned.
. comblned
. comblned

rest . first . rest
rest.rest first
rest . first. first

first rest . rest
first rest . first

You Try:

a = Link(1, link(2, 1ink(1)))
1 | 2 n
b = Link(3, link(2, link(1)))
3 J 2 'R

combined = Link@aﬁ

[=
A\

Processing Linked Lists

Sur

Goal: Given a linked 1list, 1Ink, return the sum of all elements in the
linked 1list

display_link

Goal: Given a linked 1list, 1Ink, return a string representing the
elements in the linked list

1 o 2 | 3 : <1923 >

e

Goal: Given a linked 1list, 1nk, and a one argument function, f, return
a new linked list obtained from applying f to each element of 1Ink

def map(f, 1nk):
lambda x: x * 2

““"Your Code Here"""

Mutating Linked Lists

Map, V2

Goal: Given a linked list, 1Ink, and a one argument function, T,
mutate the linked list by applying f to each element.

def map(lnk, T):

>>> Ink = Link(1, Link(2, Link(3)))
>>> map(1lnk, lambda x: x * 2)

>>> print(display_link(1lnk))

<2, 4, 6>

Map, V2

Goal: Given a linked list, 1Ink, and a one argument function, f,
mutate the linked list by applying f to each element.

def map(lnk, T): def map(1lnk, f):
it Ink is Link.empty:
return —» while 1nk is not Link.empty:
. Ink.fTirst = f(lnk.first).: — Ink.first = f(Ink.first)
—>

map(1lnk rest, T) Ink = Ink.rest

N
\ 4
o~
\ 4
(@)
N
\ 4
o~
\ 4
(@)

Map, V2

Goal: Given a linked 1list,

1nk,

and a one argument function, f,

mutate the linked list by applying f to each element.

def map(lnk, T):

it Ink is Link.empty:

return

..................................

map(1lnk rest, T)

N
\ 4
~

\ 4

def

—>
—>

—>

Note that the original Ink will not shrink

map (1nk,

while Ink is not Link.empty:

Ink first = f(lnk first)

)

Ink = 1Ink.rest

2

>
>

/

>
>

6

VVh>/ L_irw<ecj | istg? Insert element at index 1

Total number of operations =
the length of the list minus 7

VVhB/ L_iFWKENj | istg? Insert element at i1ndex 1

Total number of operations = 2
(Regardless of length of list)

inserted_elem = Link(2)
inserted_elem.rest = Ink rest
Ink .rest = inserted_elem

Tree Class

Tree Abstraction

Recursive Description : Relative Description
(wooden trees) : (family trees)

Ve
Em
1
1
I -
1 .
1 .
—N :
I -
1 o _ .
1 A
| 1 Labels
1 I:
\ I
N e e e e e e e e o P
A tree has a root and a list of branches : Each location in a tree is called a node
Fach branch is a tree : Each node has a label value

A tree with zero branches 1s called a leaf One node can be the parent/child of another

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree: def tree(label, branches=[]):
def__init__(self, label, branches=[]): for branch in branches:
self.label = label assert is_tree(branch)
for branch in branches: return [label] + list(branches)
assert isinstance(branch, Tree)
self.branches = list(branches) def label(tree):

return tree[0]

def branches(tree):
return tree[1:]

i
2
3
4
5
6

class Tree;
def __init__(self, label, branches=[]):
for b in branches:
assert isinstance(b, Tree)
self . label = label
self branches = branches

def is_leaf(self):
return not self . branches

>>> t = Tree(3, [Tree(2, [Tree(5)])} ree(4)})

>>> -’t“-. label

3

—— o — ——

- - —

o - ——

(I
5]
2 [V] 4

o |

—————

Map, V3

Goal: Given a Tree, t, and a one argument function, f, mutate the

tree by applying T to each label.

.....................................

for b in t.branches:
map(f, b)

t = Tree(3, [Tree(2, [Tree(5)]),

Tree(4)])
map(lambda x: x * 2, 1)

.........

10

bruning

Goal: Given a Tree, T, and a value n, remove all branches (sub-
trees) with label equal to n

v

3 orune(t, 1) 3
2 2

SN

