Scheme, More

Slides adapted from Berkeley cs61a

Pairs and Lists

cons: construct
car and cdr: historical reason (Lisp on IBM 704)

Pairs are created using the cons expression in Scheme

car selects the first element in a pair

cdr selects the second element in a pair

The second element of a pair must be another pair, or nil (empty)

scm> (define x (cons 1 (cons 3 nil))

X
scm> X

(13)

scm> (car x)
1

scm> (cdr x)

(3)

.L_i.S_tS (cons 2 nil)
2] o [nil]
e The only type of sequence in Scheme is the linked list 2]

o We can create these with pairs using multiple cons expressions
e nil represents the empty list

_|-_i_S_t$ (cons 2 nil)
2] o [nil]
e The only type of sequence in Scheme is the linked list 2]

o We can create these with pairs using multiple cons expressions
e nil represents the empty list

>(cons 1 (cons 2 nil))

> (define x (cons 1 (cons 2 nil))
>X

>(car x)

>(cdr x)

>(cons 1 (cons 2 (cons 3 (cons 4 nil))))

_|-_i_S_t_$ (cons 2 nil)
2] o [nil]

e The only type of sequence in Scheme is the linked list 2]
o We can create these with pairs using multiple cons expressions
e nil represents the empty list

>(cons 1 (cons 2 nil))

(12)

> (define x (cons 1 (cons 2 nil))
>X

(12)

>(car x)

1

>(cdr x)

(2)

>(cons 1 (cons 2 (cons 3 (cons 4 nil))))
(1234)

Symbols normally refer to values; how do we refer to symbols?

>(define a 1)
>(define b 2)
>(list a b)

Symbols normally refer to values; how do we refer to symbols?

>(define a 1)
>(define b 2)
>(list a b)
(12)

No sign of “a” and “b” in the }

(resulting value
L

Symbols normally refer to values; how do we refer to symbols?

>(define a 1)
>(define b 2)
>(list a b) (No sign of “a” and “b” in the }

(12) resulting value

N

Quotation is used to refer to symbols directly in Lisp.

>(list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a2)

Symbols normally refer to values; how do we refer to symbols?

>(define a 1)
>(define b 2) }

>(list a b) No sign of “a” and “b” in the
(12) resulting value

Quotation is used to refer to symbols directly in Lisp.

>(list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the

> (list 'a b) expression itself is the value.
(a2)

Quotation can also be applied to combinations to form lists.

>'(abc)
(abc)

>(car '(a b))
a

>(cdr '(a b c))
(b c)

Symbols normally refer to values; how do we refer to symbols?

>(define a 1)
>(define b 2)

>(list a b) No sign of “a” and “b” in the
(12) resulting value

Quotation is used to refer to symbols directly in Lisp.

>(list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a2)

Quotation can also be applied to combinations to form lists.

>'(abc)
(abc)

>(car '(a b))
a

>(cdr '(a b c))

Tail Recursion

Recursion Versus lteration in Python

Multiplication Frames?

def rfactorial(n): Operations"

if n == 0:

return 1 n n
else:

return n * rfactorial(n - 1)

def ifactorial(n):
total = 1
while n > @:

total *= n

n -=1

return total

Tail Recursion

We say an expression is in a tail context if it is evaluated as
the last step in the function call

o That means nothing is evaluated/applied after it is evaluated
Function calls in a tail context are called tail calls

If the tail call calls the function itself, we say that function is
tail recursive

o If alanguage supports tail call optimization, a tail recursive
function will only ever open a constant number of frames

Identifying Tail Contexts

An expression is in a tail context only if it is the last thing evaluated
in every possible scenario (no other action is performed afterwards)

For each of the following expressions, which expressions (expr1,
expr2, expr3) are in a tail context?

(and expr1 expr2 expr3) (+ expr1 expr2)

(if expr1 expr2 expr3) ((lambda (expr1) expr1) expr2)

Recursive frames

(define (fact n)
(if (= n @)
1
(* n (fact (- n1)))))

Consider a call to fact(4)

fl

: fact

f2

n: 4
rv: 24

: fact

f3

n: 3
rv: 6

: fact

f4

n: 2
rv: 2

: fact

f5

n: 1
rv: 1

: fact

n: 0
rv: 1

EAVANVAVA

We need to keep
these frames open
because the last step
in the function is to
multiply n with the
result of the recursive
call.

Tail calls

(define (fact n)
(define (fact-tail n result)
(if (<= n 1)
result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

fact(4)

Number of frames the same regardless of input
size!

ar (fact-tail (- 4 1)
(* 4 1)) returns
il

il

w

Fe %)

ar (fact-tail 2 12)

L T . B

il

Fe %)

r (fact-tail 1 24)

L T . B

f4: fact-tail
n: 1

result: 24
rv: 24

Writing Tail Recursive Functions

1) ldentify recursive calls that are not in a tail context. Tail contexts are:
o The last body subexpression in a lambda (a function)

o The consequent and alternative in a tail context if

o The last sub-expression in a tail context and, or, begin, or let

2) Create a helper function with arguments to accumulate the computation that

prevents it from being tail recursive

Example: Length of Linked List

Goal: Write a function that takes in a list and returns the length of
the list. Make sure it is tail recursive.

(define (length 1st) (define (length-tail 1st)
(if (null? 1st)
0
(+ 1 (length (cdr 1st)))))

scm> (length ‘()))
0
scm> (length ‘(1 2 (3 4))

s

