
Scheme, More

Slides adapted from Berkeley cs61a



Pairs and Lists









Demo_1











Demo_2



Tail Recursion



Recursion Versus Iteration in Python

def rfactorial(n):

if n == 0:

return 1

else:

return n * rfactorial(n - 1)

def ifactorial(n):

total = 1

while n > 0:

total *= n

n -= 1

return total

Multiplication 
Operations?

Frames?

n n

n 1

Demo_3



Tail Recursion

● We say an expression is in a tail context if it is evaluated as 
the last step in the function call
○ That means nothing is evaluated/applied after it is evaluated

● Function calls in a tail context are called tail calls
● If the tail call calls the function itself, we say that function is 

tail recursive
○ If a language supports tail call optimization, a tail recursive 

function will only ever open a constant number of frames



Identifying Tail Contexts

An expression is in a tail context only if it is the last thing evaluated 
in every possible scenario (no other action is performed afterwards)

For each of the following expressions, which expressions (expr1, 
expr2, expr3) are in a tail context?

(and expr1 expr2 expr3)

(if expr1 expr2 expr3)

(+ expr1 expr2)

((lambda (expr1) expr1) expr2)



Recursive frames

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

f1: fact
n: 4

rv: .

Consider a call to fact(4)

f2: fact
n: 3

rv: .

f3: fact
n: 2

rv: .

f4: fact
n: 1

rv: .

f5: fact
n: 0

rv: 1

1

2

6

24

We need to keep 
these frames open 
because the last step 
in the function is to 
multiply n with the 
result of the recursive 
call.



Tail calls

(define (fact n)
(define (fact-tail n result)

(if (<= n 1)
result
(fact-tail (- n 1) (* n result))))

(fact-tail n 1))

fact(4)

f1: fact-tail
n: 4
result: 1
rv: whatever (fact-tail (- 4 1) 

(* 4 1)) returns
f2: fact-tail
n: 3
result: 4
rv: whatever (fact-tail 2 12) 
returns.

f4: fact-tail
n: 1
result: 24
rv: 24

Number of frames the same regardless of input 
size!

f3: fact-tail
n: 2
result: 12
rv: whatever (fact-tail 1 24) 
returns.

Demo_4



Writing Tail Recursive Functions
1) Identify recursive calls that are not in a tail context. Tail contexts are:

○ The last body subexpression in a lambda (a function)

○ The consequent and alternative in a tail context if

○ The last sub-expression in a tail context and, or, begin, or let

2) Create a helper function with arguments to accumulate the computation that 

prevents it from being tail recursive



Example: Length of Linked List

Goal: Write a function that takes in a list and returns the length of 
the list. Make sure it is tail recursive.

(define (length lst) 
(if (null? lst)

0
(+ 1 (length (cdr lst)))))

scm> (length ‘())
0
scm> (length ‘(1 2 (3 4))
3

(define (length-tail lst) 

)

Demo_5


