
Streams

Tiffany Perumpail from cs61a

Lazy Evaluation in Scheme

Streams are similar to lists, except that the tail of a stream
is not evaluated until we asked to do it. This allows
streams to be used to represent infinitely long lists.

scm> (ints 1)
maximum recursion depth exceeded

Lazy evaluation

● In Python, iterators and generators

allowed for lazy evaluation

def ints(first):
while True:

yield first

first += 1

(define (ints first)
(cons first (ints (+ first 1)))

>>> s = ints(1)
>>> next(s)
1

>>> next(s)
2

● Scheme doesn't have iterators.

How about a list?

Second argument to cons is
always evaluated

Can represent large or
infinite sequences

Streams

Instead of iterators,

Scheme uses streams

(define (ints first)
(cons first

(ints (+ first 1)))

scm> (ints 1)
maximum recursion depth exceeded

(define (ints first)
(cons-stream first

(ints (+ first 1)))

scm> (ints 1)
(1 . #[promise (not forced)])

Lazy evaluation, just like
iterators in Python

scm> (define s (cons-stream 1 (cons-stream 2 nil)))
s
scm> s

(1 . #[promise (not forced)])
scm> (car s)
1

Streams

● Stream: (linked) list whose rest is

lazily evaluated

○ A promise to compute

I don't need the rest of this list
right now. Can you compute it
for me later?

scm>

Sure, I promise to compute it
right after I finish watching
Stranger Things.

scm> (define s (cons-stream 1 (cons-stream 2 nil)))
s
scm> s

(1 . #[promise (not forced)])
scm> (cdr s)
#[promise (not forced)]

Streams

● cdr returns the rest of a list

○ For normal lists, the rest is another

list

○ The rest of a stream is a promise to

compute the list

I want the cdr of the
list now.

scm> (define s (cons-stream 1 (cons-stream 2 nil)))
s
scm> s

(1 . #[promise (not forced)])
scm> (cdr-stream s)
(2 . #[promise (not forced)])
scm> (cdr-stream (cdr-stream s))
()

Streams

● cdr-stream forces Scheme to

compute the rest

cdr-stream !

scm> (cdr-stream s)
(2 . #[promise (not forced)])

scm> (define s (cons-stream 1 (cons-stream 2 nil)))
s
scm> (cdr s)

#[promise (not forced)]

Streams

Remember, a stream is just a regular Scheme pair whose

second element is a promise

scm> (cdr-stream (cdr-stream s))
()

(print 5) is not
evaluated yet

scm> (print 5)
5

scm> (delay (print 5))
#[promise (not forced)]

Promises: delay

● Promise: an object that delays evaluation of an expression

○ The delay special form creates promises

(print 5) is immediately
evaluated

Evaluates (print 5)

(print 5) is not
evaluated yet

scm> (define x (delay (print 5)))
x
scm> x
#[promise (not forced)]

Promises: force

● The delay special form creates promises

● The force procedure evaluates the expression inside the promise

scm> (force x)
5

scm> x
#[promise (forced)]

Error, in our interpreter

scm> (define s (cons 1 (delay nil))))
s
scm> s

(1 . #[promise (not forced)])

scm> (define s (cons-stream 1 nil)))
s
scm> s

(1 . #[promise (not forced)])
scm> (cdr-stream s)
()

Promises

cons-stream and cdr-stream are syntactic sugar.
Achieve the same effect with delay and force

scm> (force (cdr s))
()

Recursively Defined Streams - Constant Stream
Let’s start with the constant stream. A constant stream is an infinitely long stream
with a number repeated.

(define (constant-stream i)
(cons-stream i (constant-stream i)))

scm> (define ones (constant-stream 1))
scm> (car ones)
1
scm> (car (cdr-stream ones))
1

Check Your Understanding: Natural Number Stream
Let’s define the naturals stream which is an infinitely long stream with the natural
numbers starting at start.

scm> (define s (nats 0))
scm> (car s)
0
scm> (car (cdr-stream s))
1
scm> (car (cdr-stream (cdr-stream s)))
2

(define (nats start)

______________________________)

Demo_1

Natural Number Stream

(define (nats start)
(cons-stream start (nats (+ start 1)))

Add-Stream and Ints-Stream

(define ones (cons-stream 1 ones))

(define (add-stream s1 s2)
(cons-stream (+ (car s1) (car s2))

(add-stream (cdr-stream s1)
(cdr-stream s2))))

Let’s write a function that will add two infinite streams together and return a
new stream.

Let’s see it in action! Let’s first define the ones stream again.

(define ints (cons-stream 1 (add-stream ? ?))

Let’s use the ones stream and our new add-stream function to define the ints
stream. This is the same as (nats 1). How do we do this?

This is the same as (constant-stream 1).

Demo_2

Ints-Stream Solution

(define ones (cons-stream 1 ones))
(define ints (cons-stream 1 (add-stream ones ints))

ones: 1 1 1 1 1 ...

ints: 1

|
|
+
|
|

2

|
|
+
|
|

3

|
|
+
|
|

|
|
+
|
|
4 5 ...

We can use infinite streams to build other infinite streams. This is the power of
lazy evaluation, our current stream stays one step ahead of itself!

Examples: map-stream

● Implement (map-stream fn s):

○ fn is a one-argument function

○ s is a stream

● Returns a new stream with fn

applied to elements of s

(define (map-stream fn s)
'YOUR-CODE-HERE

)

Demo_3

Examples: map-stream

● How would you implement map-list?

(define (map-list fn s)
(if (null? s)

nil
(cons (fn (car s))

(map-list fn (cdr s)))))

● How about map-stream?
(define (map-stream fn s)
(if (null? s)

nil
(cons-stream (fn (car s))

(map-stream fn (cdr-stream s)))))

What happens if you change this to cons?

Examples: stream-to-list

● Implement (stream-to-list s num-elements):

○ s is a stream

○ num-elements is a non-negative integer

● Returns a Scheme list containing the first num-elements elements of s

(define (stream-to-list s num-elements)
'YOUR-CODE-HERE

)

scm> (stream-to-list (ints 1) 10)
(1 2 3 4 5 6 7 8 9 10)

Demo_4

Examples: stream-to-list

(define (stream-to-list s num-elements)
(if (or (null? s) (= num-elements 0))

nil
(cons (car s)

(stream-to-list (cdr-stream s)
(- num-elements 1))))

)

