
SQL I

from berkeley cs61a

Declarative Programming

Programming Paradigms
Up until now, we’ve been focused (primarily) on imperative programming.

Imperative program contain explicit instructions to tell the computer how
to accomplish something. The interpreter then executes those instructions

Now, we’ll learn about declarative programming, where we can just tell the
computer what we want, instead of how we want it done. The interpreter
then figures out how to accomplish that.

Declarative programs are often specialized to perform a specific task,
because they allow for repetitive computation to be abstracted away and
for the interpreter to optimize its execution

Imperative vs. Declarative

Suppose you’re going to a restaurant for dinner and need a table

Option 1:

“First I need to find a table, so I’ll look through every available table and pick the one
in the best location that has enough seats for my group, then I’ll need to find
someone to wait on me and make sure I have enough menus, then…”

Option 2:

“Table for two!”

SQL

SQL & Database Languages

SQL is an example of a (declarative) language with interacts with a database
management system (DBMS) in order to make data processing easier and faster

It collects records into tables, or a collection of rows with a value for each column

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

A table has columns
and rows

A row has a value for
each column A column

has a name
and a type

Tables in SQL (Sqlite, a small SQL database engine)
CREATE TABLE cities AS
SELECT 38 AS latitude, 122 AS longitude, "Berkeley" AS name UNION
SELECT 42, 71, "Cambridge" UNION
SELECT 45, 93, "Minneapolis";

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

SELECT "west coast" AS region, name FROM cities WHERE longitude >= 115 UNION
SELECT "other", name FROM cities WHERE longitude < 115;

Cities:
Region Name

west coast Berkeley

other Minneapolis

other Cambridge

SQL Basics
The SQL language varies across implementations but we will look at some shared
concepts.
● A SELECT statement creates a new table, either from scratch or by taking information

from an existing table
● A CREATE TABLE statement gives a global name to a table.
● Lots of other statements exist: DELETE, INSERT, UPDATE etc…
● Most of the important action is in the SELECT statement.

Today’s theme:
Full credit to John

DeNero for the
examples in today’s

lecture

Using SQL
Can download SQL at https://sqlite.org/download.html

Just want to follow along or try out some examples? Go to sql.cs61a.org. It
also has all of today’s examples loaded.

https://sqlite.org/download.html
http://sql.cs61a.org

Selecting Value Literals
A SELECT statement always includes a comma-separated list of column descriptions.

A column description is an expression, optionally followed by AS and a column name.
SELECT [expression] AS [name], [expression] AS [name], ... ;

SELECTing literals CREATEs a one-row table.

The UNION of two SELECT statements is a table containing the rows of
both of their results.

SELECT "delano" AS parent, "herbert" AS child UNION
SELECT “abraham”, "barack" UNION
SELECT "abraham", "clinton“ UNION
SELECT "fillmore", "abraham" UNION
SELECT "fillmore", "delano" UNION
SELECT "fillmore", “grover" UNION
SELECT "eisenhower", "fillmore";

Eisenhower

Fillmore

Abraham Delano Grover

HerbertBarack Clinton

Demo_1

Naming Tables
SQL is often used as an interactive language.

The result of a SELECT statement is displayed to the user,
but not stored.

A CREATE TABLE statement gives the result a name.

CREATE TABLE [name] AS [SELECT statements];

CREATE TABLE parents AS
SELECT "delano" AS parent, "herbert" AS child UNION
SELECT “abraham”, "barack" UNION
SELECT "abraham", "clinton“ UNION
SELECT "fillmore", "abraham" UNION
SELECT "fillmore", "delano" UNION
SELECT "fillmore", “grover" UNION
SELECT "eisenhower", "fillmore";

Parent Child

delano herbert

abraham barack

abraham clinton

fillmore abraham

fillmore delano

fillmore grover

eisenhower fillmore

Parents:

Demo_2

Selecting From Tables

SELECT Statements Project Existing Tables
A SELECT statement can specify an input table using a FROM clause.

A subset of the rows of the input table can be selected using a WHERE clause.

Can declare the order of the remaining rows using an ORDER BY clause. Otherwise, no order

Column descriptions determine how each input row is projected to a result row:

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order] [ASC/DESC] LIMIT
[number];

sqlite> SELECT * FROM parents ORDER BY parents DESC;
sqlite> SELECT child FROM parents WHERE parent = "abraham";
sqlite> SELECT parent FROM parents WHERE parent > child;

WHERE and ORDER
BY are optional

Only use ASC/DESC if
there’s order by

Demo_3

Arithmetic in SELECT Statements
In a SELECT expression, column names evaluate to row values.
Arithmetic expressions can combine row values and constants

CREATE TABLE restaurant AS
SELECT 101 AS table, 2 AS single, 2 AS couple UNION
SELECT 102 , 0 , 3 UNION
SELECT 103 , 3 , 1;

sqlite> SELECT table, single + 2 * couple AS
total FROM restaurant;

table total

101 6

102 6

103 5

101

102

Given a table ints that describes how to sum powers of 2 to form various integers.
CREATE TABLE ints AS
SELECT "zero" AS word, 0 AS one, 0 AS two, 0 AS four, 0 AS eight UNION
SELECT "one" , 1 , 0 , 0 , 0 UNION
SELECT "two" , 0 , 2 , 0 , 0 UNION
SELECT "three" , 1 , 2 , 0 , 0 UNION
SELECT "four" , 0 , 0 , 4 , 0 UNION
SELECT "five" , 1 , 0 , 4 , 0 UNION
SELECT "six" , 0 , 2 , 4 , 0 UNION
SELECT "seven" , 1 , 2 , 4 , 0 UNION
SELECT "eight" , 0 , 0 , 0 , 8 UNION
SELECT "nine" , 1 , 0 , 0 , 8;

(A) Write a SELECT
statement for a two-
column table of the
word and value for
each integer

(B) Write a SELECT
statement for the
word names of the
powers of two

word value

zero 0

one 1

... ...

word

one

two

...Demo_4

Joining Tables

Back To Dogs
CREATE TABLE parents AS
SELECT "delano" AS parent, "herbert" AS child UNION
SELECT "abraham", "barack" UNION
SELECT "abraham", "clinton" UNION
SELECT "fillmore", "abraham" UNION
SELECT "fillmore", "delano" UNION
SELECT "fillmore "grover" UNION
SELECT "eisenhower", "fillmore";

Parent Child

delano herbert

abraham barack

abraham clinton

fillmore abraham

fillmore delano

fillmore grover

eisenhower fillmore

Parents:

An Example:

CREATE TABLE parents AS
SELECT "delano" AS parent, "herbert" AS child UNION
SELECT "abraham", "barack" UNION
...

CREATE TABLE dogs AS
SELECT "abraham" AS name, "long" AS fur UNION
SELECT "barack", "short" UNION
SELECT "clinton", "long" UNION
SELECT "delano", "long" UNION
SELECT "eisenhower", "short" UNION
SELECT "fillmore", "curly" UNION
SELECT "grover", "short" UNION
SELECT "herbert", "curly";

E

F

A D G

H

B C

Select the parents of curly-furred dogs

Parent

eisenhower

delano

Joining Tables

SELECT * FROM parents, dogs;

SELECT * FROM parents, dogs WHERE fur = "curly";

SELECT * FROM parents, dogs WHERE child = name AND fur = "curly";

SELECT parent FROM parents, dogs WHERE child = name AND fur = "curly";

Selects all combinations of rows from both tables. We only want the rows for curly haired dogs.

This filters the 56 rows to now only have rows where the fur is curly. But this has rows that have
nothing to do with each other. We only care about rows where the two dogs match.

The condition on which the tables are joined on is called the join condition.

Two tables A & B are joined by a comma to yield all combinations of a row from A & a row from B.

Demo_5

Joining A Table With Itself
Two tables may share a column name; dot expressions and aliases disambiguate column values.

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];

[table] is a comma-separated list of table names with optional aliases.

Select all pairs of siblings. No duplicates.

First Second

barack clinton

abraham delano

abraham grover

delano grover

Eisenhower

Fillmore

Abraham Delano Grover

Herbert

Barack Clinton

Demo_6

Aliasing
SELECT * FROM parents, parents;

SELECT * FROM parents AS a, parents AS b;

SELECT * FROM parents AS a, parents AS b WHERE a.parent = b.parent;

SELECT a.child AS first, b.child AS second FROM parents AS a, parents
AS b WHERE a.parent = b.parent AND a.child < b.child;

This doesn’t work because the tables share a column. Let’s fix that!

This works because now SQL can tell the columns in the two tables apart. Let’s now
only keep rows where the children share a parent.

We need to get rid of duplicates because pairs of siblings appear twice. We can do this by enforcing
an arbitrary ordering, a.child < b.child alphabetically. Then we get the two columns we want.

String Expressions (If Time)

String Expressions
String values can be combined to form longer strings.

sqlite> SELECT "hello," || " world";
hello, world
sqlite> SELECT name || " dog" FROM dogs;
abraham dog
barack dog
clinton dog
delano dog
eisenhower dog
fillmore dog
grover dog
herbert dog

Let’s look at an example of this in action!

Demo_7

