
Mock Exam Problems (Homework06, Nov 16)

1 OOP and Inheritance (2021A, 18pts)

The teaching assistants (TAs) of SICP want to open a beverage store. Currently they sell normal drinks and milk
beverage. But they encounter some problems when using Python to sell drinks, can you help them out? TAs already
implement the Drink and Milk classes:

1 class Drink:
2 menu = []
3

4 def __init__(self, name):
5 self.cups = 0
6 self.name = name
7 if name not in Drink.menu:
8 Drink.menu.append(name)
9

10 def make(self, amount):
11 self.cups += amount
12

13 def order(self, amount):
14 if amount > self.cups:
15 print('Insufficient cups')
16 else:
17 self.cups -= amount
18 print('OK')
19

20 def in_menu(name):
21 return name in Drink.menu
22

23

24 class Milk(Drink):
25 def __init__(self, name='Milk'):
26 super().__init__(name)

1.1 Attributes (4pts)

Among the three attributes: (1) menu, (2) cups, and (3) name.
Which of them are class attributes, which of them are instance attributes?

1.2 What Would Python Display? (7pts)

TAs want to test their code! What would Python display when evaluating the following code in interactive console?
Write your answer in each blank line.

1 >>> d = Drink('Coffee')
2 >>> m = Milk()
3 >>> m is d
4 ____________________

1

5 >>> d.menu
6 ____________________
7 >>> Milk.menu = ['WholeMilk', 'LowFatMilk']
8 >>> d.menu == m.menu
9 ____________________
10 >>> d.menu = ['Cola']
11 >>> Drink.in_menu('Cola')
12 ____________________

1.3 Inheritance and Override (7pts)
The bussiness is hot and there is a milk shortage. TAs decide to set purchase limitations on milk drinks: at most one
cup in each order. If a customer orders two or more cups of milk, an error message should be displayed.

Please modify Milk class to satisfy the behaviors described in doctest. You don’t need to use all lines provided.

1 class Milk(Drink):
2 """
3 >>> drinks = [Drink('Coffee'), Milk()]
4 >>> for d in drinks:
5 ... d.make(4)
6 >>> for d in drinks:
7 ... assert d.cups == 4
8 >>> for d in drinks:
9 ... d.order(1)
10 OK
11 OK
12 >>> for d in drinks:
13 ... d.order(2)
14 OK
15 Insufficient milk
16 >>> for d in drinks:
17 ... d.order(2)
18 Insufficient cups
19 Insufficient milk
20 """
21 def __init__(self, name='Milk'):
22 super().__init__(name)
23

24 __
25 __
26 __
27 __
28 __

2

class Pet:
 life = 100
 def __init__(self, birth):
 self.dead = birth + self.life

class A:
 total = 0
 def __init__(self, c):
 self.count = self.total
 self.total = c + 1

class B(A):
 def __init__(self, c):
 self.count = self.total
 total = c + 1

class C(B):
 total = 10
 def __init__(self, a, b):
 self.count = a
 total = b
 B.__init__(self, 0)

1. (21 points) OOP and Inheritance
For each of the expressions in the table below, write the output displayed by the interactive Python interpreter when
the expression is evaluated. Each line in the right-hand side of the table corresponds to each output.

Note that the interactive interpreter displays the value of a successfully evaluated expression, unless it is None. Assume
that you have started Python3 and executed the code shown on the left. Expressions evaluated by the interpreter
have a cumulative effect.

 Expression Interactive Output

p = Pet(2020)
q = Pet(2021)
p.dead
q.dead

Pet.life = 50
p.life
q.life

p.life = 80
p.life
q.life

Pet.life = 70
p.life
q.life

a = A(10)
a.count
a.total
A.total

b = B(20)
b.count
b.total
B.total

c = C(30, 40)
c.count
c.total
C.total

(2020A)

	OOP and Inheritance (2021A, 18pts)
	Attributes (4pts)
	What Would Python Display? (7pts)
	Inheritance and Override (7pts)

