
Mock Exam Problems (Homework07, Nov 23)

1 Special Methods (2021A, 10pts)

In mathematics, a set is a collection of elements. Alice implements Set with following program in Python.

1 class Set:

2 def __init__(self, elements):

3 self.elements = elements

4

5 def __str__(self):

6 if not self.elements:

7 return '{}'

8 else:

9 s = '{' + str(self.elements[0])

10 for element in self.elements[1:]:

11 s += ', ' + str(element)

12 return s + '}'

13

14 def __repr__(self):

15 return 'Set(' + repr(self.elements) + ')'

1.1 What Would Python Display? (4pts)

What would display when evaluating the following Python code in interactive console? Fill your answer in the blank.

1 >>> s = Set([1, 2, 3])

2 >>> s

3 __________________________________________________

4 >>> print(s)

5 __________________________________________________

6 >>> str(s)

7 __________________________________________________

8 >>> print(repr(s))

9 __________________________________________________

1



ࠁ.ࠀ Set Operations (6pts)

Alice discovers that her code is incorrect if some elements are duplicate. For example, Set([1, 2, 2, 3]) pro-
duces {1, 2, 2, 3}, which is not a valid set because it should only contain unique elements.

To make elements in a set unique, Bob helps Alice rewrite the __init__ special method in below, so that a Set
never contains duplicated elements. Alice feels happy about that.

Besides that, Bob also writes two special methods to support addition and substraction on sets.

• The addition of two sets A,B is the set of all elements that are either members of A or members of B.

• The subtraction of two sets A,B is the set of all elements that are members of A, but not members of B.

Bob provides the following Venn diagrams to help Alice understand the two set operations.

Venn diagrams for set operations A+B and A−B

Fill in the blanks to complete Bob’s program.

ࠀ class Set:

ࠁ def __init__(self, elements):

ࠂ self.elements = []

ࠃ for element in elements:

ࠄ if element not in self.elements:

ࠅ self.elements.append(element)

ࠆ

ࠇ def __add__(self, other):

ࠈ return Set(________________________ + ________________________)

߿ࠀ

ࠀࠀ def __sub__(self, other):

ࠁࠀ elements = []

ࠂࠀ for __________________________________________________:

ࠃࠀ if _______________________________________________:

ࠄࠀ ______________________________________________

ࠅࠀ return Set(________________)

ࠁ



ࠁ Linked Lists ,Aࠀࠁ߿ࠁ) 6pts)

Fill in the blanks to implement two in-place mutations on linked lists:

• reverse takes a non-empty linked list, reverses the order of it, and returns the reversed list.

• merge takes two non-empty linked lists of the same length (assuming 〈x1, x2, ..., xn〉 and 〈y1, y2, ..., yn〉), and
merges the latter one into the former one, which results to 〈x1, y1, x2, y2, ..., xn, yn〉.

The two functions should modify the given lists in-place, which means you cannot call Link constructor in your
solution. Doctests are provided to clarify the usage and expected behavior.

ࠀ def reverse(lnk):

ࠁ """Reverse a linked list.

ࠂ >>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5, Link(6))))))

ࠃ >>> print(reverse(lnk))

ࠄ <6 5 4 3 2 1>

ࠅ """

ࠆ if ________________ is Link.empty:

ࠇ return lnk

ࠈ result = reverse(lnk.rest)

߿ࠀ ________________________________________________

ࠀࠀ ________________________________________________

ࠁࠀ return result

ࠂࠀ

ࠃࠀ def merge(lnk1, lnk2):

ࠄࠀ """Merge two linked lists with same length.

ࠅࠀ >>> lnk1, lnk2 = Link(1, Link(2, Link(3))), Link(4, Link(5, Link(6)))

ࠆࠀ >>> merge(lnk1, lnk2)

ࠇࠀ >>> print(lnk1)

ࠈࠀ <1 4 2 5 3 6>

߿ࠁ """

ࠀࠁ while lnk1 is not Link.empty:

ࠁࠁ rst1, rst2 = lnk1.rest, lnk2.rest

ࠂࠁ lnk1.rest, ________________ = ________________, ________________

ࠃࠁ lnk1, lnk2 = rst1, rst2

ࠂ



2.  (9 points) Special Methods 
In mathematics, a complex number is a number that can be expressed in the form 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real 
numbers, and 𝑖 represents the imaginary unit that satisfies the equation 𝑖2 = −1. For example, 2 +  3𝑖 is a complex 
number. For the complex number 𝑎 +  𝑏𝑖 , 𝑎  is called the real part, and 𝑏  is called the imaginary part. To 
emphasize, the imaginary part does not include a factor 𝑖; that is, the imaginary part is 𝑏, not 𝑏𝑖. 
 
Complex numbers can be added and multiplied. For any complex number 𝑐1 and 𝑐2 where 𝑐1 = 𝑎 + 𝑏𝑖 and 𝑐2 =
𝑐 + 𝑑𝑖, the additi瀂瀁 瀂瀃erat瀂r ‘+’ is defi瀁ed as 𝑐1 + 𝑐2 = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 and the multiplicati瀂瀁 瀂瀃erat瀂r ‘⋅’ is 
defined as 𝑐1 ⋅ 𝑐2 = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖. 
 
In the following questions, we will use Python to represent and compute complex numbers! 
 
(a, 4 points) The code below defines a Complex class that represents the complex number. The instance attributes 
real and imag represents the real part and imaginary part of a complex number correspondingly. Read the definition 
carefully and for each of the expressions in the table below, write the output displayed by the interactive Python 
interpreter when the expression is evaluated. 

 
class Complex: 

 

def __init__(self, real, imag): 
    self.real = real 

    self.imag = imag 

 

def __repr__(self): 
    return 'So complex' 
 

def __str__(self): 
    return 'Happy new year' 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression Interactive Output 
>>> c = Complex(1, 2) 

>>> c 

>>> print(c) 

>>> repr(c) 

>>> str(c) 

 
___________________________ 
___________________________ 
___________________________ 
___________________________ 



(b, 2 points) The result of print(c) above looks interesting. However, as a programmer, we need a more 
informative __str__ method to help us know the value of a complex number instance. Please redefine the __str__ 
method of the Complex class so that the expression print(Complex(a, b)) will present us a+bi on the terminal. 
N瀂te that the ‘a’ a瀁d ‘b’ i瀁 a+bi sh瀂u濿d be re瀃濿aced by the stri瀁g f瀂r瀀at 瀂f the variab濿e ‘a’ a瀁d ‘b’ fr瀂瀀 
print(Complex(a, b)). The string format of a variable x can be obtained by calling str(x). The doctests below 
may do you some favor as to understand the problem. 

 
class Complex: 

... 

def __str__(self): 
    """ 

    >>> print(Complex(3, 4)) 

    3+4i 

    >>> print(Complex(2.0, 0)) 

    2.0+0i 

    >>> print(Complex(0, 1)) 

    0+1i 

    """ 

    return ___________________________________________________ 
 
(c, 3 points) Now let's implement the addition and multiplication of complex numbers. Do you still remember the 
operator overloading in Python? Recall that when Python evaluates the expression a + b, it is in fact evaluating 
a.__add__(b). As a result, we can define the __add__ meth瀂d i瀁 a c濿ass t瀂 cha瀁ge the behavi瀂r 瀂f the ‘+’ 瀂瀃erat瀂r, 
which is so called operator overloading. This feature is useful for our Complex class because we can write the more 
intuitive code a + b instead of add(a, b) when we want to express the addition of two instances of the Complex 
class, i.e. a and b. We have shown you the implementation of the __add__ method of the Complex class below as 
an example, which satisfies the definition of the complex number's additi瀂瀁 瀂瀃erat瀂r ‘+’ 瀀e瀁ti瀂瀁ed ab瀂ve. Y瀂ur task 
is to implement the __mul__ 瀀eth瀂d, which 瀂ver濿瀂ads the ‘*’ 瀂瀃erat瀂r i瀁 瀃yth瀂瀁, t瀂 satisfy the defi瀁iti瀂瀁 瀂f the 
瀀u濿ti瀃濿icati瀂瀁 瀂瀃erat瀂r‘⋅’(After implementing it, you can now easily calculate the multiplication of complex numbers 
and show the result by a simple Python expression print(a * b)). 

 
class Complex: 

... 

def __add__(self, other): 
    return Complex(self.real + other.real, self.imag + other.imag) 
 
def __mul__(self, other): 
    return ________(_________________________________________________, 

                       __________________________________________________) 

 
 
 
 
 
 
 
 
 



 
3.  (12 points) Linked List & Tree 
In this problem, we have a Link class and a Tree class to use, which are defined as below. 
 
class Link: 

empty = () 

 

def __init__(self, first, rest=empty): 
    assert rest is Link.empty or isinstance(rest, Link) 

self.first = first 

self.rest = rest 

 

    def __repr__(self): 
        if self.rest is not Link.empty: 
            rest_repr = ', ' + repr(self.rest) 

        else: 
            rest_repr = '' 

        return 'Link(' + repr(self.first) + rest_repr + ')' 
 
 
 
 
class Tree: 
 

    def __init__(self, label, branches=[]): 
        for b in branches: 
            assert isinstance(b, Tree) 
        self.label = label 

        self.branches = branches 

 

    def is_leaf(self): 
        return not self.branches 
 

def __repr__(self): 
        if self.branches: 
            branch_str = ', ' + repr(self.branches) 

        else: 
            branch_str = '' 

        return 'Tree({0}{1})'.format(self.label, branch_str) 
 
 
 
 
 
 
 
 
 
 



 
 
(a, 5 points) Write a function interleave that takes in two linked lists link1 and link2 and returns a new linked 
list, which is the result of link1 and link2 interleaved in pairs (first the node of link1, then the node of link2). 
If link1 has more nodes than link2, just copy the remaining nodes to the new linked list, and the same is true for 
the condition that link2 has more nodes than link1. Fill in the lines and implement the function in a recursive 
manner. 
 
def interleave(link1, link2): 
    """ 

    >>> link1 = Link(1, Link(3)) 

    >>> link2 = Link(2, Link(4, Link(6))) 

    >>> link3 = interleave(link1, link2) 

    >>> link3 

    Link(1, Link(2, Link(3, Link(4, Link(6))))) 

    >>> link3 is not link1 # should create a new linked list 
    True 

    """ 

    if link1 is Link.empty and link2 is Link.empty: 

        return ______________________________________________ 

    if link1 is Link.empty: 

        return ______________________________________________ 

    if link2 is Link.empty: 

        return ______________________________________________ 

    return ____________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
(b, 7 points) Define a function nondecreasing_paths which takes in a nonempty Tree t and returns all the 
nondecreasing paths of t. A path is a list of labels of nodes passed from the root to an end node (the end node can 
be any node, including the root, leaves, and intermediate nodes), and a path can be denoted as [𝑙1, 𝑙2, … , 𝑙𝑛], where 
𝑙𝑖 is the label of the 𝑖-th node of this path (𝑙1 is the root node). A nondecreasing path is a path that satisfies the 
requirement that for any two nodes 𝑖 and 𝑗 (where 𝑖 < 𝑗) in the path, we have 𝑙𝑖 ≤ 𝑙𝑗. Taking the example in the 
following doctests, [2, 2, 3] is a nondecreasing path of t1, while [2, 2, 1] is not a nondecreasing path of t1 
because the label of the third node (i.e., 1) is smaller than that of the second node (i.e., 2). Different paths can be in 
any order. We have provided a (partial) skeleton for you, and you can either use it or not, which does not affect your 
score of this question. 
 
def nondecreasing_paths(t): 
    """ 

    >>> t1 = Tree(2, [Tree(2, [Tree(3), Tree(1, [Tree(6)]), Tree(5)]), Tree(5)]) 

    >>> sorted(nondecreasing_paths(t1)) 

    [[2], [2, 2], [2, 2, 3], [2, 2, 5], [2, 5]] 

    """ 

    # Choice 1: you can use this skeleton and fill in the lines. 

    assert t 
    paths = _____________________ 

    for _____________________ in _____________________: 

        if _______________________________________: 

            for _____________________ in _____________________: 

                paths.append(__________________________________________) 

    return paths 

  

 # Choice 2: you can also implement this function from scratch. No penalty for  

# this problem 

  

 

 
 
 
 
 
 
 
 
 
 
4.  (15 points) Scheme 
(a, 4 points) Something you should know about Scheme 
(1) The two types of expressions in scheme are                     and                    ; 
(2)  Give the names of at least two special-form expressions:                                  ; 
(3)  The full name of REPL is                                                             . 
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