Mutable Values

Mutation Operations

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)
4

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)

4

>>> mystery(four)

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope
>>> four = [1, 2, 3, 4]
>>> len(four)

>>> mystery(four)
>>> len(four)

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s):
>>> len(four) s.pop()

4 s.pop()

>>> mystery(four)

>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

>>> four = [1, 2, 3, 4]

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> another_mystery() # No arguments!

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)

>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> another_mystery() # No arguments!
>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)
>>> len(four)

2

>>> four = [1, 2, 3, 4] def another_mystery():
>>> len(four) four.pop()

4 four.pop()

>>> another_mystery() # No arguments!
>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Tuples

(Demo)

Tuples are Immutable Sequences

Tuples are Immutable Sequences

Immutable values are protected from mutation

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> ooze()

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> o0oze()
>>> turtle

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> o0oze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> o0oze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> ooze() >>> ooze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> oozel() >>> oozel()
>>> turtle >>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> oozel() >>> oozel()
>>> turtle >>> turtle

(1, 2, 3) ['Anything could be inside!']

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can J zzz :8ii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz gaii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X + X

Name change:
>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X

Name change:

>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle =

(1, 2, 3)

>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:

change turtle's binding

00ze can

1

>>> turtle = [1, 2, 3]

>>> oozel()

>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

>>> X
>>> X
4

>>> X

+

2
X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz gaii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4

>>> X 3
>>> X + X

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz gaii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4
>>> X 3
>>> X + X
6

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4
>>> X = 3
>>> X + X
6

Name change: Object mutation:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2

>>> X + X >>> X + X
4 . .
Name change: Object mutation:
>>> X = 3
>>> X + X >>> X + X

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> X = [1, 2]
>>> X + X >>> X + X
4 . .
Name change: Object mutation:
>>> X = 3
>>> X + X >>> X + X

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]

>>> X + X >>> X + X
Name change: ! _ Object mutation: 11, 2, 1, 21

>>> X = 3

>>> X + X >>> X + X

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz $3i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>>X=[1, 2]
>>> X + X >>> X + X
. 4 . . . [1; 2} 1! 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gaiiié Next lecture: ooze can } zzz gaii{;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>>X=[1, 2]
>>> X + X >>> X + X
. 4 . . . [1; 2} 1! 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X

6 [1, 2, 3, 1, 2, 3]

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)
>>> s[0] = 4

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)
>>> s[0] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR >>> g

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz ggii{é Next lecture: ooze can } zzz 28i${;
(1, 2, 3) change turtie’s binding ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR >>> g

([4, 21, 3)

Mutation

Sameness and Change

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces

*A rational number is just its numerator and denominator

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator
This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

[10]
a

>>> Q
>>> D

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]
>>> b = a
>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]
>>> p = a
>>> g ==
True

>>> a.append(20)

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]

>>> b = g

>>> g ==

True

>>> a.append(20)
>>> Qq

[10, 20]

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]

>>> b = g

>>> g ==

True

>>> a.append(20)
>>> Qq

[10, 20]

>>> Db

[10, 20]

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" list even if we change its contents

>>> g = [10]
>>> p = a
>>> g ==
True

>>> a.append(20)
>>> g

[10, 20]
>>> D

[10, 20]
>>> g ==
True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10]
>>> b = g
>>> g ==
True

>>> a.append(20)
>>> Qq

[10, 20]
>>> Db

[10, 20]

>>> g ==
True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]
>>> p = a

>>> g ==

True

>>> a.append(20)
>>> g

[10, 20]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]
>>> b = 3 >>> b = [10]
>>> g ==

True

>>> a.append(20)

>>> g

[10, 20]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]
>>> b = a >>> b = [10]
>>> g == >>> g ==
True True

>>> a.append(20)

>>> 3

[10, 20]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g

[10, 20]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> a >>> a

[10, 20] [10]

>>> D

[10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g >>> g

[10, 20] [10]

>>> b >>> b

[10, 20] [10, 20]

>>> g ==

True

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g >>> g

[10, 20] [10]

>>> b >>> b

[10, 20] [10, 20]

>>> a == >>> g ==

True False

|dentity Operators

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)

Mutable Default Arguments are Dangerous

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

s £()

1

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

>>> ()

1

>>> ()

2

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

>>> ()

1

>>> ()

2

>>> ()
3

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame func f(s) [parent=Global]
s.append(3) ¢ ,////”%>

e return len(s) %t .
| I I) _ 3 3 3
. f() fl: f [parent=Global]
1 s |
>>> () Return
2 value
>>> f()
3 f2: f [parent=Global]
S L
Return 2
value

f3: f [parent=Global]
S L

Return 3
value

pythontutor.com/composingprograms.html#code=def%20%285%3D []%29%3A%0A%20%20%20%20s . appendss283%29%0A%20%20%20%20 returns201en%s285%29%0A%20%20%20%20%0A F%28%29%0A F%28%29%0A F%28%29&mode=d isp lay&origin=composingprogranms. js&cumulative=t rue&py=3&rawInputLstISON=[]&curInstr=

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame /f—-?func f(s) [parent=Global]
e s.append(3) f -
IS
e return len(s) o 11 |2
= s . — 3 3 3
oo () fl: f [parent=Global]
1 S |
>>> () Return
2 value | Each time the function
>>> f() is called, s is bound
3 f2: f [parent=Global] to the same value!
S L
Return 2
value |

f3: f [parent=Global]
S L

Return 3
value »

pythontutor.com/composingprograms.html#code=def%20%285%3D []%29%3A%0A%20%20%20%20s . appendss283%29%0A%20%20%20%20 returns201en%s285%29%0A%20%20%20%20%0A F%28%29%0A F%28%29%0A F%28%29&mode=d isp lay&origin=composingprogranms. js&cumulative=t rue&py=3&rawInputLstISON=[]&curInstr=

Lists

Lists in Environment Diagrams

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Operation

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t =[5, 6]

Operation Example

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t =[5, 6]

Operation Example Result

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t =[5, 6]
Operation Example Result
append adds one s.append(t)
element to a list t=20

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t =[5, 6]
Operation Example Result Global
append adds one s.append(t)
element to a list t=20

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

Global

list
0 1
2 3
list
0 1
5 | ¥Xo

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s - [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

Global

list
0 1
2 3
list
0 1
5 | ¥Xo

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t =[5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s - [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] =0

s - [2, 3, 5, 6]
t - [5, 0]

addition & slicing
create new lists
containing existing
elements

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements

b[1]1[1] = ©

Global

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements

b[1]1[1] = ©

Global

list

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\ @
2
list list
0 0
list /
0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\ @
2
list list
0 0
list /
0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list

\ @
2
list

0
5

list /

0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Example Result

append adds one
element to a list

s.append(t)
t=20

s » [2, 3, [5, 6]]
t-0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list

\ @
2
list

0
5

list /

0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result Global
append adds one s.append(t) s - [2, 3, [5, 6]] s
element to a list t=20 t -0 t
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list b
addition & slicing a=-s + [t]
create new lists b =all:]
containing existing all]l =9
elements b[1][1] =0

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
_____—‘\‘\\\\\‘____* 0
2
list
0
5
list /
0 1 2
> e/
list
0 1

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0

extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]

to another list

addition & slicing a=-s + [t]

create new lists b =all:]

containing existing all]l =9

elements b[1]1[1] = @

Global

list
\@ 1
2 3
list
(/] 1
5 | ¥Xo
list /
(/] 1 2
> |'xa|”
list
0 1

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s - [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]

Global

—

list
\@ 1
2 3
list
(/] 1
5 | ¥Xo
list /
(/] 1 2
> |'xa|”
list
0 1

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

list

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = 0@ b - [3, [5, 0]]
The list function t = list(s)
also creates a new s[1] = 0

list containing
existing elements

list
0 1

2 X0
list
0 1

2 3
list
0 1

5 6

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll = 9 a- [2,9, [5 0]l
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s » [2, 0]
also creates a new s[1] = 0 t - [2, 3]

list containing
existing elements

list
0 1

2 X0
list
0 1

2 3
list
0 1

5 6

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = @ t - [5, 0]
to another list
addition & slicing a=s + [t] s - [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2,9, [5 0]l
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

list

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1]1[1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t
replaces a slice with |s[3:] =t

new values

tl1] =0

list

Xo

Lists in Environment Diagrams

Assume that before each example below we execute:

Global

s
t

list

X5

s = [2, 3]

t = [5, 6]
Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=20 t -0
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 - [5, 0]
to another list
addition & slicing a=s + [t] s » [2, 3]
create new lists b =all:] t - [5, 0]
containing existing alll =9 a- [2, 9, [5, 0]]
elements b[1][1] = @ b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1] =0 t - [2, 3]
list containing
existing elements
slice assignment s[0:0] =t s - [5, 6, 2, 5, 6]
replaces a slice with [s[3:] =t t - [5, 0]

new values

tl1] =0

list

Xo

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

removes & returns
last element

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

removes & returns |t = s.pop()
last element

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

pop removes & returns [t = s.pop()

s - [
the last element t - 3

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

pop removes & returns [t = s.pop() s - [
the last element t -3

remove removes the
first element equal
to the argument

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]

pop removes & returns
the last element

t = s.pop()

remove removes the
first element equal
to the argument

t.extend(t)
t.remove(5)

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]

pop removes & returns [t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

slice assignment can
remove elements from
a list by assigning
[1 to a slice.

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]

to the argument

slice assignment can |s[:1] = []
remove elements from |[t[0:2] = []
a list by assigning
[1 to a slice.

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]

Operation Example Result

pop removes & returns |t = s.pop() s » [2]

the last element t -3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

slice assignment can |s[:1] = [] s - [3]
remove elements from |[t[0:2] = [] t - []

a list by assigning
[1 to a slice.

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3] Global list

t[1:3] = [t] 0 1
t.extend(t) tie—T— 1 2

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1’ 2’ 3] Global list

t[1:3] = [t] 0 1
t.extend(t) tie—T— 1 2

list /

0
[t] evaluates to: /

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3] list

t[1:3] = [t] Stobal) =

t.extend(t) tie—T— 1
list /
V4

[t] evaluates to:

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t) t

[t] evaluates to:

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

Global

t ~—

list

0

1

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

Global

t ~—

list

0

1

[T

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

Global

t ~—

list

0

1

[T

t = [[1, 2], [3, 4]]
t[0].append(t[1:2])

Lists in Lists in Lists in Environment Diagrams
t =11, 2, 3] Global LSt N Sz

t[1:3] = [t] 0 1 2 1 2
t.extend(t) t T 1 % : 1

t = [[1l 2]7 [3; 4]] Global list list
t[0].append(t[1:2]) A 0 1 ' @3
|
list
0 1

Lists in Lists in Lists in Environment Diagrams

t=11,72 3] Global list N

t[1:3] = [t] 2 T >
t.extend(t) t | 1 %

7
[T
t = [[1, 2], [3, 4]] Global list
t[0].append(t[1:2]) e 0 1
T
!
list
0 1

Lists in Lists in Lists in Environment Diagrams

t=11,72 3] Global list N

t[1:3] = [t] 2 T >
t.extend(t) t | 1 %

7
[T
t = [[1, 2], [3, 4]] Global list
t[0].append(t[1:2]) e 0 1
T
!
list
0 1

Lists in Lists in Lists in Environment Diagrams

t = [1, 2, 3] lis
e11:3] = [t] Global : t 1\ . /1
t.extend(t) tie—T— 1 % : 1
7 N
[T
(1, [...1, 1, [...]]
t = [[1, 2], [3, 4]] Global %St : 1®iSt
t[0].append(t[1:2]) N 3 4
T
| J
list lis
0 1 2 0 l
1 2 —
[(1, 2, [[3, 4111, [3, 411

