
Mutable Values



Mutation Operations



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

def mystery(s): 
    s.pop() 
    s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

def mystery(s): 
    s.pop() 
    s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s): 
    s[2:] = []

or



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]

def mystery(s): 
    s.pop() 
    s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s): 
    s[2:] = []

or



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]
>>> len(four)
4

def mystery(s): 
    s.pop() 
    s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s): 
    s[2:] = []

or



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> another_mystery() # No arguments!

def mystery(s): 
    s.pop() 
    s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s): 
    s[2:] = []

or



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> another_mystery() # No arguments!
>>> len(four)
2

def mystery(s): 
    s.pop() 
    s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s): 
    s[2:] = []

or



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> another_mystery() # No arguments!
>>> len(four)
2

def mystery(s): 
    s.pop() 
    s.pop()

def another_mystery(): 
    four.pop() 
    four.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s): 
    s[2:] = []

or



Tuples

(Demo)



Tuples are Immutable Sequences

12



Tuples are Immutable Sequences

Immutable values are protected from mutation

12



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

Name change:

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change:

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change:

>>> x = 2

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change:

>>> x = 2

4

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change:

>>> x = 2

4
>>> x = 3

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change:

>>> x = 2

4
>>> x = 3

6

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]
>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> s = ([1, 2], 3)

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> s = ([1, 2], 3)
>>> s[0][0] = 4

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> s = ([1, 2], 3)
>>> s[0][0] = 4
>>> s

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x 

>>> x + x 

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> s = ([1, 2], 3)
>>> s[0][0] = 4
>>> s
([4, 2], 3)

>>> x + x 

>>> x + x 

Next lecture: ooze can 
change turtle's binding



Mutation



Sameness and Change

14



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

14



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

14



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

14



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

14



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True



Identity Operators

15



Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

15



Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1> 

evaluates to True if both <exp0> and <exp1> evaluate to equal values

15



Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1> 

evaluates to True if both <exp0> and <exp1> evaluate to equal values

Identical objects are always equal values

15



Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1> 

evaluates to True if both <exp0> and <exp1> evaluate to equal values

Identical objects are always equal values

15

(Demo)



Mutable Default Arguments are Dangerous

16



Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16



Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

>>> def f(s=[]):
...     s.append(3)
...     return len(s)
... 



Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

>>> def f(s=[]):
...     s.append(3)
...     return len(s)
... 
>>> f()
1



Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

>>> def f(s=[]):
...     s.append(3)
...     return len(s)
... 
>>> f()
1
>>> f()
2



Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

>>> def f(s=[]):
...     s.append(3)
...     return len(s)
... 
>>> f()
1
>>> f()
2
>>> f()
3



Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16
pythontutor.com/composingprograms.html#code=def%20f%28s%3D[]%29%3A%0A%20%20%20%20s.append%283%29%0A%20%20%20%20return%20len%28s%29%0A%20%20%20%20%0Af%28%29%0Af%28%29%0Af%28%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

>>> def f(s=[]):
...     s.append(3)
...     return len(s)
... 
>>> f()
1
>>> f()
2
>>> f()
3



Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16
pythontutor.com/composingprograms.html#code=def%20f%28s%3D[]%29%3A%0A%20%20%20%20s.append%283%29%0A%20%20%20%20return%20len%28s%29%0A%20%20%20%20%0Af%28%29%0Af%28%29%0Af%28%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

>>> def f(s=[]):
...     s.append(3)
...     return len(s)
... 
>>> f()
1
>>> f()
2
>>> f()
3

Each time the function 
is called, s is bound 
to the same value!



Lists



Lists in Environment Diagrams

18



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

Global



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

Global

s list
10

2t 3

list
10

5 6

2



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

Global

s list
10

2t 3

list
10

5 6

20



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

Global

s list
10

2t 3

list
10

5 6

20



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

Global

s list
10

2t 3

list
10

5 6

2 3
5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

Global

s list
10

2t 3

list
10

5 6

2 3
5 6

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

Global

s list
10

2t 3

list
10

5 6

2 3
5 6

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6

list
0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6

list
10

2 3
2

list
0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a
list
0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3

9



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3

9

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

18

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3

9

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

19

Global

s list
10

2t 3

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

19

Global

s list
10

2t 3

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

list
10

2 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

19

Global

s list
10

2t 3

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

list
10

2 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

19

Global

s list
10

2t 3

list
10

5 6

0

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

list
10

2 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

19

Global

s list
10

2t 3

list
10

5 6

0

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

list
10

2 3

s → [2, 0] 
t → [2, 3]



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

20

Global

s

list
10

2t 3

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

21

Global

s

list
10

5t 6

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0

32
2 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

21

Global

s

list
10

5t 6

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0

32
2 3 5

4
6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

21

Global

s

list
10

5t 6

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0

32
2 3 5

4
6

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

21

Global

s

list
10

5t 6

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0

32
2 3 5

4
6

0

s → [5, 6, 2, 5, 6] 
t → [5, 0]



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() 



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() s → [2] 
t → 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() s → [2] 
t → 3

remove removes the 
first element equal 
to the argument



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)

s → [2, 3] 
t → [6, 5, 6]



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)

s → [2, 3] 
t → [6, 5, 6]

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)

s → [2, 3] 
t → [6, 5, 6]

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.

s[:1] = [] 
t[0:2] = [] 



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

22

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)

s → [2, 3] 
t → [6, 5, 6]

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.

s[:1] = [] 
t[0:2] = [] 

s → [3] 
t → []



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

list
0

[t] evaluates to:



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

list
0

[t] evaluates to:



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

list
0

[t] evaluates to:

1



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

[1, [...], 1, [...]]



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

Global

t

list
10

list
10

1 2

list
10

3 4

[1, [...], 1, [...]]



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

Global

t

list
10

list
10

1 2

list
10

3 4

list
0

[1, [...], 1, [...]]



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

Global

t

list
10

list
10

1 2

list
10

3 4

list
02

[1, [...], 1, [...]]



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

23

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

Global

t

list
10

list
10

1 2

list
10

3 4

list
02

[1, [...], 1, [...]]

[[1, 2, [[3, 4]]], [3, 4]]


