
SICP Scheme Built-In Procedure Manual
Adapted from CS61A of UC Berkeley.

This document serves as a reference for the built-in procedures in the Scheme project and staff Scheme
interpreter（the one in your homework and lab archive）. The web interpreter includes several additional
built-in procedures.

In all of the syntax definitions below, <x> refers to a required element x that can vary, while [x] refers to
an optional element x . Ellipses indicate that there can be more than one of the preceding element. It is
assumed for all of these built-ins that the elements represent evaluated arguments not the literal
expressions typed in.

Core Interpreter
apply

Calls procedure with the given list of args .

On macros, this has the effect of calling the macro without the initial quoting or final evaluation. Thus,
apply treats a macro as if it were a function.

display

Prints val . If val is a Scheme string, it will be output without quotes.

A new line will not be automatically included.

displayln

Like display , but includes a newline at the end.

error

(apply <procedure> <args>)1

scm> (apply + '(1 2 3))
6

1
2

(display <val>)1

(displayln <val>)1

(error <msg>)1

https://scheme.cs61a.org/

Raises an SchemeError with msg as it's message. If there is no msg , the error's message will be empty.

eval

Evaluates expression in the current environment.

exit

Exits the interpreter. In the web interpreter, this does nothing.

load

Loads the contents of the file with filename and evaluates the code within. filename must be a symbol. If
that file is not found, filename .scm will be attempted.

The web interpreter's does not currently support load . The closest analog is import-inline , which takes a
URL and evaluates the Scheme code in the current environment.

newline

Prints a new line.

print

Prints the Scheme representation of each val , separated by spaces. Unlike display , this will include the
outer quotes on a Scheme string, and a newline.

Type Checking
atom?

Returns true if arg is a boolean, number, symbol, string, or nil; false otherwise.

(eval <expression>)1

scm> (eval '(cons 1 (cons 2 nil)))
(1 2)

1
2

(exit)1

(load <filename>)1

(newline)1

(print <val>...)1

(atom? <arg>)1

boolean?

Returns true if arg is a boolean; false otherwise.

integer?

Returns true if arg is a integer; false otherwise.

list?

Returns true if arg is a well-formed list (i.e., it doesn't contain a stream); false otherwise. If the list has a
cycle, this may cause an error or infinite loop.

number?

Returns true if arg is a number; false otherwise.

null?

Returns true if arg is nil (the empty list); false otherwise.

pair?

Returns true if arg is a pair; false otherwise.

procedure?

Returns true if arg is a procedure; false otherwise.

(boolean? <arg>)1

(integer? <arg>)1

(list? <arg>)1

scm> (list? '(1 2 3))
True
scm> (list? (cons-stream 1 nil))
False

1
2
3
4

(number? <arg>)1

(null? <arg>)1

(pair? <arg>)1

(procedure? <arg>)1

promise?

Returns true if arg is a promise; false otherwise.

string?

Returns true if arg is a string; false otherwise.

symbol?

Returns true if arg is a symbol; false otherwise.

Pair and List Manipulation
append

Returns the result of appending the items of all lst s in order into a single list. Returns nil if no lst s.

car

Returns the car of pair . Errors if pair is not a pair.

cdr

Returns the cdr of pair . Errors if pair is not a pair.

(promise? <arg>)1

(string? <arg>)1

(symbol? <arg>)1

(append [lst] ...)1

scm> (append '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)
scm> (append)
()
scm> (append '(1 2 3) '(a b c) '(foo bar baz))
(1 2 3 a b c foo bar baz)
scm> (append '(1 2 3) 4)
Error

1
2
3
4
5
6
7
8

(car <pair>)1

(cdr <pair>)1

cons

Returns a new pair with first as the car and rest as the cdr

length

Returns the length of arg . If arg is not a list, this will cause an error.

list

Returns a list with the item s in order as its elements.

map

Returns a list constructed by calling proc (a one-argument procedure) on each item in lst .

filter

Returns a list consisting of only the elements of lst that return true when called on pred (a one-argument
procedure).

reduce

Returns the result of sequentially combining each element in lst using combiner (a two-argument
procedure). reduce works from left-to-right, with the existing combined value passed as the first argument
and the new value as the second argument. lst must contain at least one item.

Mutation

set-car!

Sets the car of pair to value . pair must be a pair.

set-cdr!

(cons <first> <rest>)1

(length <arg>)1

(list <item> ...)1

(map <proc> <lst>)1

(filter <pred> <lst>)1

(reduce <combiner> <lst>)1

(set-car! <pair> <value>)1

Sets the cdr of pair to value . pair must be a pair.

Arithmetic Operations
+

Returns the sum of all num s. Returns 0 if there are none. If any num is not a number, this will error.

-

If there is only one num , return its negation. Otherwise, return the first num minus the sum of the
remaining num s. If any num is not a number, this will error.

*

Returns the product of all num s. Returns 1 if there are none. If any num is not a number, this will error.

/

If there are no divisor s, return 1 divided by dividend . Otherwise, return dividend divided by the
product of the divisors . This built-in does true division, not floor division. dividend and all divisor s
must be numbers.

abs

Returns the absolute value of num , which must be a number.

(set-cdr! <pair> <value>)1

(+ [num] ...)1

(- <num> ...)1

(* [num] ...)1

(/ <dividend> [divisor] ...)1

scm> (/ 4)
0.25
scm> (/ 7 2)
3.5
scm> (/ 16 2 2 2)
2

1
2
3
4
5
6

(abs <num>)1

expt

Returns the base raised to the power power. Both must be numbers.

modulo

Returns a modulo b . Both must be numbers.

quotient

Returns dividend integer divided by divisor . Both must be numbers.

remainder

Returns the remainder that results when dividend is integer divided by divisor . Both must be numbers.
Differs from modulo in behavior when negative numbers are involved.

Additional Math Procedures

The Python-based interpreter adds the following additional procedures whose behavior exactly match the
corresponding Python functions in the math module.

acos

acosh

asin

(expt <base> <power>)1

(modulo <a>)1

scm> (modulo 7 3)
1
scm> (modulo -7 3)
2

1
2
3
4

(quotient <dividend> <divisor>)1

scm> (quotient 7 3)
2

1
2

(remainder <dividend> <divisor>)1

scm> (remainder 7 3)
1
scm> (remainder -7 3)
-1

1
2
3
4

https://docs.python.org/3/library/math.html

asinh

atan

atan2

atanh

ceil

copysign

cos

cosh

degrees

floor

log

log10

log1p

log2

radians

sin

sinh

sqrt

tan

tanh

trunc

Boolean Operations

General

eq?

If a and b are both numbers, booleans, symbols, or strings, return true if they are equivalent; false
otherwise.

Otherwise, return true if a and b both refer to the same object in memory; false otherwise.

(eq? <a>)1

equal?

Returns true if a and b are equivalent. For two pairs, they are equivalent if their car s are equivalent and
their cdr s are equivalent.

not

Returns true if arg is false-y or false if arg is truthy.

On Numbers

=

Returns true if a equals b . Both must be numbers.

<

Returns true if a is less than b . Both must be numbers.

>

Returns true if a is greater than b . Both must be numbers.

<=

Returns true if a is less than or equal to b . Both must be numbers.

scm> (eq? '(1 2 3) '(1 2 3))
False
scm> (define x '(1 2 3))
scm> (eq? x x)
True

1
2
3
4
5

(equal? <a>)1

scm> (equal? '(1 2 3) '(1 2 3))
True

1
2

(not <arg>)1

(= <a>)1

(< <a>)1

(> <a>)1

(<= <a>)1

>=

Returns true if a is greater than or equal to b . Both must be numbers.

even?

Returns true if num is even. num must be a number.

odd?

Returns true if num is odd. num must be a number.

zero?

Returns true if num is zero. num must be a number.

Promises and Streams
force

Returns the evaluated result of promise . If promise has already been forced, its expression will not be
evaluated again. Instead, the result from the previous evaluation will be returned. promise must be a
promise.

cdr-stream

Shorthand for (force (cdr <stream>)) .

Turtle Graphics
backward

(>= <a>)1

(even? <num>)1

(odd? <num>)1

(zero? <num>)1

(force <promise>)1

(cdr-stream <stream>)1

(backward <n>)1

Moves the turtle backward n units in its current direction from its current position.

Aliases: back , bk

begin_fill

Starts a sequence of moves that outline a shape to be filled. Call end_fill to compe the fill.

bgcolor

Sets the background color of the turtle window to a color c (same rules as when calling color).

circle

Draws a circle of radius r , centered r units to the turtle's left. If extent exists, draw only the first extent
degrees of the circle. If r is positive, draw in the counterclockwise direction. Otherwise, draw in the
clockwise direction.

The web interpreter has trouble accurately drawing partial circles.

clear

Clears the drawing, leaving the turtle unchanged.

color

Sets the pen color to c , which is a Scheme string such as "red" or "#ffc0c0".

The web interpreter also allows c to be a symbol. Available named colors may vary depending on the
interpreter.

end_fill

Fill in shape drawn since last call to begin_fill .

exitonclick

(begin_fill)1

(bgcolor <c>)1

(circle <r> [extent])1

(clear)1

(color <c>)1

(end_fill)1

(exitonclick)1

In pillow-turtle mode, this exits the current program. In tk-turtle mode, it exits the current program when
the window is clicked. In the web interpreter, it closes the canvas.

In the local interpreter, you can pass --turtle-save-path PATH to also effectively call (save-to-file
PATH) right before exit.

forward

Moves the turtle forward n units in its current direction from its current position.

Alias: fd

hideturtle

Makes the turtle invisible.

This procedure has no effect on the web interpreter, as the turtle is always invisible.

Alias: ht

left

Rotates the turtle's heading n degrees counterclockwise.

Alias: lt

pendown

Lowers the pen so that the turtle starts drawing.

Alias: pd

penup

Raises the pen so that the turtle does not draw.

Alias: pu

pixel

(forward <n>)1

(hideturtle)1

(left <n>)1

(pendown)1

(penup)1

(pixel <x> <y> <c>)1

Draws a box filled with pixels starting at (x , y) in color c (same rules as in color). By default the box is
one pixel, though this can be changed with pixelsize .

pixelsize

Changes the size of the box drawn by pixel to be size x size .

rgb

Returns a color string formed from r , g , and b values between 0 and 1.

right

Rotates the turtle's heading n degrees clockwise.

Alias: rt

save-to-file

Saves the current canvas to a file specified by f , with an added file extension.

For example, (save-to-file "hi")

saves to ./hi.png in the local interpreter using the pillow-turtle

saves to ./hi.ps in the local interpreter using the tk-turtle (default)

has no effect in the web interpreter

screen_width

Returns the width of the turtle screen in pixels of the current size.

screen_height

Returns the height of the turtle screen in pixels of the current size.

setheading

(pixelsize <size>)1

(rgb <r> <g>)1

(right <n>)1

(save-to-file <f>)1

(screen_width)1

(screen_height)1

Sets the turtle's heading h degrees clockwise from the north.

Alias: seth

setposition

Moves the turtle to position (x , y) without changing its heading.

Aliases: setpos , goto

showturtle

Makes the turtle visible.

This procedure has no effect on the web interpreter, as the turtle is always invisible.

Alias: st

speed

Sets the turtle's animation speed to some value between 0 and 10 with 0 indicating no animation and 1-10
indicating faster and faster movement.

On the local interpreter in tk-turtle mode, this changes the animation speed. This feature has no effect
on the web interpreter and on the gui-less pillow-turtle mode.

(setheading <h>)1

(setposition <x> <y>)1

(showturtle)1

(speed <s>)1

	SICP Scheme Built-In Procedure Manual
	Core Interpreter
	Type Checking
	Pair and List Manipulation
	Mutation

	Arithmetic Operations
	Additional Math Procedures

	Boolean Operations
	General
	On Numbers

	Promises and Streams
	Turtle Graphics

