
Scheme Review
Jiacai Cui

PASCAL Group @ Nanjing University

Content

• Basics

• Pairs and Lists

• Macros

• Streams

• Interpreters

Basics

Scheme Expressions

Scheme Program = Expressions

• Primitives:
• Self-evaluating: numbers(3 5.5 -10), booleans(#t #f)

• Symbols: names bound to values(+ modulo list x foo hello-world)

• Combinations: (<operator> <operand1> <operand2> ...)
• Call expression

• Special form expression

Call Expressions

(<operator> <operand1> <operand2> ...)

A call expression applies a procedure to some arguments

1. Evaluate the operator to get a procedure

2. Evaluate all operands from left to right to get the arguments

3. Apply the procedure to the arguments
a) Create a local frame

b) Bind arguments to parameters in the local frame

c) Evaluate the body expression in the local frame and return its value

Special Forms - Define

(define <name> <expression>)

1. Evaluate the given expression to get a value

2. Bind the value to the given name in the current frame

3. Return the name as a symbol

Special Forms - Lambda

(lambda (<parameter1> <parameter2> ...) <body>)

1. Create a procedure with the given parameters and body expression

2. Return the procedure

(define (f <parameter1> <parameter2> ...) <body>)

is short for

(define f (lambda (<parameter1> <parameter2> ...) <body>))

Special Forms - If

(if <predicate> <if-true> <if-false>)

1. Evaluate the predicate

2. If the predicate isn’t #f, evaluate <if-true> and return the value

• #f is the only falsy value in Scheme

3. Otherwise, evaluate <if-false> and return the value

Pairs and Lists

Pairs

• Pairs are created using the cons expression in scheme.

• car selects the first elements in a pair.

• cdr selects the second elements in a pair.

• The second element of a pair must be another pair, or nil (empty).

Quotation

'<expression> short for (quote <expression>)

Quotation is a special form to indicate that the expression itself is the

value.

• Be used to refer to symbols directly.

• Be applied to combinations to form lists.

Tail Recursion

• An expression is in a tail context only if it is the last thing evaluated in

every possible scenario (no other action is performed afterwards).

(fact 5)
= (* 5 (fact 4))
= (* 5 (* 4 (fact 3)))
= (* 5 (* 4 (* 3 (fact 2))))
= (* 5 (* 4 (* 3 (* 2 (fact 1)))))
= (* 5 (* 4 (* 3 (* 2 (* 1 (fact 0))))))
= (* 5 (* 4 (* 3 (* 2 (* 1 1)))))
= (* 5 (* 4 (* 3 (* 2 1))))
= (* 5 (* 4 (* 3 2)))
= (* 5 (* 4 6))
= (* 5 24)
= 120

(fact-optimized 5 1)

= (fact-optimized 4 5)

= (fact-optimized 3 20)

= (fact-optimized 2 60)

= (fact-optimized 1 120)

= (fact-optimized 0 120)

= 120

v.s.

Macros

Expression as Data

• Expressions are either primitives or combinations (i.e. lists), which
means they are also a kind of data!

• Quoting helps you get the unevaluated expression as a kind of data.
• Quoting a self-evaluating primitive gets you itself.

• Quoting a name gets you a symbol of that name.

• Quoting a combination gets you a list of that combination.

• Calling eval on an unevaluated expression will evaluate that
expression to get a value.

Macros

(define-macro (<name> <parameter1> <parameter2> ...) <body>)

Macros take in and return expressions, which are then evaluated in
place of the call to the macro.

1. Evaluate the operator sub-expression, which evaluates to a macro procedure.

2. Apply the macro procedure to the operand expressions without evaluating
them first.

3. Evaluate the expression returned by the macro procedure in the frame the
macro was called in.

Quasiquotation

`<expression> is short for (quasiquote <expression>)

,<expression> is short for (unquote <expression>)

• Quasiquotation helps you write unevaluated expressions more easily.

• quasiquote overall quote an expression with partially some sub-

expressions unquoted (i.e. evaluated) by unquote.

Streams

Stream - Lazy Evaluated List

• nil is the empty stream.

• cons-stream constructs a stream (i.e. pair) containing the value of

the first operand and a promise to evaluate the second operand.

• car returns the first element of the stream (i.e. pair).

• cdr-stream evaluates and returns the rest of stream (i.e. pair).

Interpreters

Read-Evaluate-Print Loop (REPL)

Thanks!

