
SICP Scheme Specification  
Adapted from CS61A of UC Berkeley.

 

About This Specification  
The version of Scheme used in this course is not perfectly true to any official specification of the language, 
though it is perhaps closest to R5RS, with some features and terminology from other versions, both older 
and newer. We deviate from the official specifications for several reasons, including ease of implementation 
(both for the staff in reference implementations and for students in completing the Scheme project) and 
ease of instruction.

This document and the linked built-in procedure reference are very long and are an attempt to formalize 
the variant of Scheme used in 61A. Lectures, labs, and discussion are probably better resources for first 
learning the language. However, the Overview and Terminology section may be useful if you wish to read a 
more formal description of the language.

You should not find it necessary to read the full references of special forms and built-in procedures, but 
specific sections may be helpful to reference when working on Scheme assignments and the project (the 
relevant sections will typically be linked in the assignment itself).

There are, in effect, two different reference implementations of 61A Scheme: the Python-based staff 
interpreter, provided in Scheme labs and homeworks, and the Dart-based web interpreter (interpreter, 
source code). A completed and correct implementation of the Scheme project, including all extra credit 
problems, should match the functionality of the staff interpreter, excluding error tracing.

This document primarily focuses on the Python-based interpreter. The web interpreter should largely match 
its behavior, but due to the different host language and restraints of the web platform, some inconstencies 
may exist, for which you can file issues. Additionally, the web interpreter contains several extra features, 
such as a diagrammer and JS interopability that are not documented here.

 

Overview and Terminology  

Expressions and Environments  

Scheme works by evaluating expressions in environments. Every expression evaluates to a value. Some 
expressions are self-evaluating, which means they are both an expression and a value, and that it 
evaluates to itself.

A frame is a mapping from symbols (names) to values, as well as an optional parent frame. The current 
environment refers to the current frame, as well as a chain of parent frames up to the global frame (which 
has no parent). When looking up a symbol in an environment, Scheme first checks the current frame and 
returns the corresponding value if it exists. If it doesn't, it repeats this process on each subsequent parent 
frame, until either the symbol is found, or there are no more parent frames to check.

Atomic Expressions  

http://www.schemers.org/Documents/Standards/R5RS/
https://scheme.cs61a.org/
https://github.com/Cal-CS-61A-Staff/dart_scheme
https://github.com/Cal-CS-61A-Staff/dart_scheme/issues


There are several atomic or primitive expressions. Numbers, booleans, strings, and the empty list ( nil ) 
are all both atomic and self-evaluating. Symbols are atomic, but are not self-evaluating (they instead 
evaluate to a value that was previously bound to it in the environment).

Call Expressions  

The Scheme expressions that are not atomic are called combinations, and consist of one or more 
subexpressions between parentheses. Most forms are evaluated as call expressions, which has three 
evaluation steps:

1. Evaluate the first subexpression (the operator), which must evaluate to a procedure (see below).

2. Evaluate the remaining subexpressions (the operands) in order.

3. Apply the procedure from step 1 to the evaluated operands (arguments) from step 2.

These steps mirror those in Python and other languages.

Special Forms  

However, not all combinations are call expressions. Some are special forms. The interpreter maintains a 
set of particular symbols (sometimes called keywords) that signal that a combination is a special form 
when they are the first subexpression. Each special form has it's own procedure for which operands to 
evaluate and how (described below). The interpreter always checks the first subexpression of a combination 
first. If it matches one of the keywords, the corresponding special form is used. Otherwise, the combination 
is evaluated as a call expression.

Symbolic Programming  

Scheme's core data type is the list, built out of pairs as described below. Scheme code is actually built out of 
these lists. This means that the code (+ 1 2)  is constructed as a list of the +  symbol, the number 1, and 
the number 2, which is then evaluated as a call expression.

Since lists are normally evaluated as combinations, we need a special form to get the actual, unevaluated 
list. quote  is a special form that takes a single operand expression and returns it, unevaluated. Therefore, 
(quote (+ 1 2))  returns the actual list of the symbol + , the number 1, and the number 2, rather than 
evaluating the expression to get the number 3. This also works for symbols. a  is looked up in the current 
environment to get the corresponding value, while (quote a)  evaluates to the literal symbol a .

Because quote  is so commonly used in Scheme, the language has a shorthand way of writing it: just put a 
single quote in front of the expression you want to leave unevaluated. '(+ 1 2)  and 'a  are equivalent to 
(quote (+ 1 2))  and (quote a) , respectively.

Miscellaneous  

Like R5RS, SICP Scheme is entirely case-insensitive (aside from strings). This specification will use lowercase 
characters in symbols, but the corresponding uppercase characters may be used interchangeably.

 

Types of Values  



Numbers  

Numbers are built on top of Python's number types and can thus support a combination of arbitrarily-large 
integers and double-precision floating points.

The web interpreter attempts to replicate this when possible, though may deviate from Python-based 
versions due to the different host language and the need to work-around the quirks of JavaScript when 
running in a browser.

Any valid real number literal in the interpreter's host language should be properly read. You should not 
count on consistent results when floating point numbers are involved in any calculation or on any numbers 
with true division.

Booleans  

There are two boolean values: #t  and #f . Scheme booleans may be input either as their canonical #t  or 
#f  or as the words true  or false .

Any expression may be evaluated in a boolean context, but #f  is the only value that is false. All other values 
are treated as true in a boolean context.

Some interpreters prior to Spring 2018 displayed the words true  and false  when booleans were output, 
but this should not longer be the case in any interpreter released/updated since then.

Symbols  

Symbols are used as identifiers in Scheme. Valid symbols consist of some combination of alphanumeric 
characters and/or the following special characters:

All symbols should be internally stored with lowercase letters. Symbols must not form a valid integer or 
floating-point number.

Strings  

Unlike other implementations, 61A Scheme has no concept of individual characters. Strings are considered 
atomic data types in their own right. Strings can be entered into the intepreter as a sequence of characters 
inside double quotes, with certain characters, such as line breaks and double quotes escaped. As a general 
rule, if a piece of text would be valid as a JSON key, it should work as a string in 61A Scheme. Strings in 61A 
Scheme are immutable, in contrast to most other Scheme implementations.

These differences in how strings behave are due to the status of strings in the host languages: Python and 
Dart both have immutable strings with no concept of individual characters.

Because the Python-based interpreter has little use for strings, it lacks proper support for their 
manipulation. The web interpreter, which requires strings for JS interop (among other things), it supports a 
string-append  built-in, which takes in an arbitrary number of values or any type and combines them into a 
string. Additional string manipulation can be done through JS interop.

Pairs and Lists  

!$%&*/:<=>?@^_~+-.1



Pairs are a built-in data structure consisting of two fields, a car  and a cdr  (also sometimes called first and 
second, or first and rest). The first value can contain any scheme datatype. However, the second value must 
contain nil, a pair, or a stream promise.

nil  is a special value in Scheme which represents the empty list. It can be inputted by typing nil  or ()  
into the interpreter.

A list is defined as either nil  or a pair whose cdr  is another list. Pairs are displayed as a parenthesized, 
space separated, sequence of the elements in the sequence they represent. For example, (cons (cons 1 
nil) (cons 2 nil))  is displayed as ((1) 2) . Note that this means that cons  is asymmetric.

There is one exception to the above rule in the case of streams. Streams are represented as the car  
of the stream, followed by a dot, followed by the promise that makes up its cdr. For example

List literals can be constructed through the quote special form, so (cons 1 (cons 'a nil))  and '(1 a)  
are equivalent.

Procedures  

Procedures represent some subroutine within a Scheme program. Procedures are first-class in Scheme, 
meaning that they can be bound to names and passed around just like any other Scheme value. Procedures 
are equivalent to functions in most other languages, and the two terms are sometimes used 
interchangeably.

Procedures can be called on some number of arguments, performing some number of actions and then 
returning some Scheme value.

A procedure call can be performed with the syntax (<operator> <operand> ...) , where <operator>  is 
some expression that evaluates to a procedure and each <operand>  (of which there can be any number, 
including 0) evaluates to one of the procedure's arguments. The term "procedure call" is used 
interchangeably with the term "call expression."

There are several types of procedures. Built-in procedures (or just built-ins) are built-in to the interpreter 
and already bound to names when it is started (though it is still possible for you to rebind these names). A 
list of all the built-in procedures in the Python-based interpreter is available in the Scheme built-ins 
document.

Lambda procedures are defined using the lambda  or define  special forms (see below) and create a new 
frame whose parent is the frame in which the lambda was defined in when called. The expressions in the 
lambda's body are than evaluated in this new environment. Mu procedures are similar, but the new frame's 
parent is the frame in which the mu  is called, not the frame in which it was created.

SICP Scheme also has macro procedures, which must be defined with the define-macro  special form. 
Macros work similarly to lambdas, except that they pass the argument expressions in the call expression 
into the macro instead of the evaluated arguments and they then evaluate the expression the macro 
returns in the calling environment afterwards. The modified process for evaluating macro call expressions 
is:

1. Evaluate the operator. If it is not a macro procedure, follow the normal call expression steps.

scm> (cons-stream 1 nil)
(1 . #[promise (not forced)])

1
2



2. Apply the macro procedure from step 1 to the unevaluated operands.

3. Once the macro returns, evaluate that value in the calling environment.

Macros effectively let the user define new special forms. Macro procedures take in unevaluated operand 
expressions and should generally return a piece of Scheme code that the macro is equivalent to.

Promises and Streams  

Promises represent the delayed evaluation of an expression in an environment. They can be constructed by 
passing an expression into the delay  special form. The evaluation of a promise can be forced by passing it 
into the force  built-in. The expression of a promise will only ever be evaluated once. The first call of force  
will store the result, which will be immediately returned on subsequent calls of force  on the same 
promise.

A promise must contain a pair or nil since it is used as the cdr  of a stream. If it is found to contain 
something else when forced, force  will error. If force  errors for any reason, the promise remains 
unforced.

For example

Or, for an example with type errors:

scm> (define p (delay (begin (print "hi") (/ 1 0))))
p
scm> p
#[promise (unforced)]
scm> (force p)
hi
Error
scm> p
#[promise (unforced)]
scm> (force p)
hi
Error

1
2
3
4
5
6
7
8
9

10
11
12

scm> (define p (delay (begin (print "hi") 2)))
p
scm> p
#[promise (unforced)]
scm> (force p)
hi
Error
scm> p
#[promise (unforced)]
scm> (force p)
hi
Error

1
2
3
4
5
6
7
8
9

10
11
12



Promises are used to define streams, which are to lists what promises are to regular values. A stream is 
defined as a pair where the cdr is a promise that evaluates to another stream or nil . The cons-stream  
special form and the cdr-stream  built-in are provided make the construction and manipulation of streams 
easier. (cons-stream a b)  is equivalent to (cons a (delay b))  while (cdr-stream x)  is equivalent to 
(force (cdr x)) .

A note for those familiar with promises in languages like JavaScript: although Scheme promises and JS-
style promises originate from the same general concept, JS promises are best described as a 
placeholder for a value that is computed asynchronously. The Python-based 61A Scheme interpreter 
has no concept of asynchrony, so its promises only represent delayed evaluation. The web interpreter 
continues to use promises in this way, but adds a "future" type to stand in place for JS promises.

 

Special Forms  
In all of the syntax definitions below, <x>  refers to a required element x  that can vary, while [x]  refers to 
an optional element x . Ellipses indicate that there can be more than one of the preceding element.

The following special forms are included in all versions of 61A Scheme.

define  

Evaluates <expression>  and binds the value to <name>  in the current environment. <name>  must be a 
valid Scheme symbol.

Constructs a new lambda procedure with param s as its parameters and the body  expressions as its body 
and binds it to name  in the current environment. name  must be a valid Scheme symbol. Each param  must 
be a unique valid Scheme symbol. This shortcut is equivalent to:

However, some interpreters may give lambdas created using the shortcut an intrinsic name of name  for the 
purpose of visualization or debugging.

In either case, the return value is the symbol <name> .

Variadic functions  

(define <name> <expression>)1

(define (<name> [param] ...) <body> ...)1

(define <name> (lambda ([param] ...) <body> ...))1

scm> (define x 2)
x
scm> (define (f x) x)
f

1
2
3
4

https://en.wikipedia.org/wiki/Futures_and_promises


In staff implementations of the scheme language, you can define a function that takes a variable number of 
arguments by using the variadic  special form. The construct variadic  constructs a "variadic symbol" 
that is bound to multiple rather than a single variable. This is only allowed at the end of an arguments list

This is also possible in lambdas:

You can use the special symbol .  to construct the variadic  special form:

This is analogous to ,  for unquote .

Note: this is pretty much the same as *args  in python, except that you can't call a function using 
variadic , you instead have to use the #[apply]  built-in function.

if  

Evaluates predicate . If true, the consequent  is evaluated and returned. Otherwise, the alternative , if it 
exists, is evaluated and returned (if no alternative  is present in this case, the return value is undefined).

cond  

Each clause  may be of the following form:

scm> (define (f x (variadic y)) (append y (list x)))
f
scm> (f 1 2 3)
(2 3 1)
scm> (define (f (variadic y) x) (append y (list x)))
Error

1
2
3
4
5
6

scm> (define f (lambda (x (variadic y)) (append y (list x))))
f
scm> (f 1 2 3)
(2 3 1)
scm> (define my-list (lambda ((variadic x)) x))
my-list
scm> (my-list 2 3 4)
(2 3 4)

1
2
3
4
5
6
7
8

scm> (define (f x . y) (append y (list x)))
f
scm> (f 1 2 3)
(2 3 1)
scm> '. x
(variadic x)

1
2
3
4
5
6

(if <predicate> <consequent> [alternative])1

(cond <clause> ...)1



The last clause  may instead be of the form (else [expression] ...) , which is equivalent to (#t 
[expression] ...) .

Starts with the first clause . Evaluates test . If true, evaluate the expression s in order, returning the last 
one. If there are none, return what test  evaluated to instead. If test  is false, proceed to the next clause . 
If there are no more clause s, the return value is undefined.

and  

Evaluate the test s in order, returning the first false value. If no test  is false, return the last test . If no 
arguments are provided, return #t .

or  

Evaluate the test s in order, returning the first true value. If no test  is true and there are no more test s 
left, return #f .

let  

Each binding  is of the following form:

First, the expression  of each binding  is evaluated in the current frame. Next, a new frame that extends 
the current environment is created and each name  is bound to its corresponding evaluated expression  in 
it.

Finally the body  expressions are evaluated in order, returning the evaluated last one.

begin  

Evaluates each expression  in order in the current environment, returning the evaluated last one.

lambda  

(<test> [expression] ...)1

(and [test] ...)1

(or [test] ...)1

(let ([binding] ...) <body> ...)1

(<name> <expression>)1

(begin <expression> ...)1

(lambda ([param] ...) <body> ...)1



Creates a new lambda with param s as its parameters and the body  expressions as its body. When the 
procedure this form creates is called, the call frame will extend the environment this lambda was defined in.

mu  

Creates a new mu procedure with param s as its parameters and the body  expressions as its body. When 
the procedure this form creates is called, the call frame will extend the environment the mu is called in.

quote  

Returns the literal expression  without evaluating it.

'<expression>  is equivalent to the above form.

delay  

Returns a promise of expression  to be evaluated in the current environment.

cons-stream  

Shorthand for (cons <first> (delay <rest>)) .

set!  

Evaluates expression  and binds the result to name  in the first frame it can be found in from the current 
environment. If name  is not bound in the current environment, this causes an error.

The return value is undefined.

quasiquote  

Returns the literal expression  without evaluating it, unless a subexpression of expression  is of the form:

(mu ([param] ...) <body> ...)1

(quote <expression>)1

(delay <expression>)1

(cons-stream <first> <rest>)1

(set! <name> <expression>)1

(quasiquote <expression>)1

(unquote <expr2>)1



in which case that expr2  is evaluated and replaces the above form in the otherwise unevaluated 
expression .

`<expression>  is equivalent to the above form.

unquote  

See above. ,<expr2>  is equivalent to the form mentioned above.

unquote-splicing  

Note: This special form is included in the staff interpreter and the web interpreter, but it is not in 
scope for the course and is not included in the project.

Similar to unquote , except that expr2  must evaluate to a list, which is then spliced into the structure 
containing it in expression .

,@<expr2>  is equivalent to the above form.

define-macro  

Note: This special form is implemented as part of an extra credit problem.

Constructs a new macro procedure with param s as its parameters and the body  expressions as its body 
and binds it to name  in the current environment. name  must be a valid Scheme symbol. Each param  must 
be a unique valid Scheme symbol. (<name> [param] ...)  can be variadic.

Macro procedures should be lexically scoped, like lambda procedures.

 

(unquote-splicing <expr2>)1

(define-macro (<name> [param] ...) <body> ...)1


	SICP Scheme Specification
	About This Specification
	Overview and Terminology
	Expressions and Environments
	Atomic Expressions
	Call Expressions
	Special Forms
	Symbolic Programming
	Miscellaneous

	Types of Values
	Numbers
	Booleans
	Symbols
	Strings
	Pairs and Lists
	Procedures
	Promises and Streams

	Special Forms
	define
	Variadic functions

	if
	cond
	and
	or
	let
	begin
	lambda
	mu
	quote
	delay
	cons-stream
	set!
	quasiquote
	unquote
	unquote-splicing
	define-macro



